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ABSTRACT

The study of network robustness is a critical tool in the characteri-
zation and understanding of complex interconnected systems such
as transportation, infrastructure, communication, and computer
networks. Through analyzing and understanding the robustness
of these networks we can: (1) quantify network vulnerability and
robustness, (2) augment a network’s structure to resist attacks and
recover from failure, and (3) control the dissemination of entities
on the network (e.g., viruses, propaganda). While significant re-
search has been conducted on all of these tasks, no comprehensive
open-source toolbox currently exists to assist researchers and prac-
titioners in this important topic. This lack of available tools hinders
reproducibility and examination of existing work, development of
new research, and dissemination of new ideas. We contribute Tiger,
an open-sourced Python toolbox to address these challenges. Tiger
contains 22 graph robustness measures with both original and fast
approximate versions; 17 failure and attack strategies; 15 heuristic
and optimization based defense techniques; and 4 simulation tools.
By democratizing the tools required to study network robustness,
our goal is to assist researchers and practitioners in analyzing their
own networks; and facilitate the development of new research in the
field. Tiger is open-sourced at: https://github.com/safreita1/TIGER.
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1 INTRODUCTION

Motivation. First mentioned as early as the 1970’s [7], network
robustness has a rich and diverse history spanning numerous fields
of engineering and science [3, 14, 23, 26, 30]. This diversity of
research has generated a variety of unique perspectives, providing
fresh insight into challenging problemswhile equipping researchers
with fundamental knowledge for their investigations. While the
fields of study are diverse, they are linked by a common definition of
robustness, which is defined as a measure of a network’s ability to
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continue functioning when part of the network is naturally damaged
or targeted for attack [3, 5, 9].

The study of network robustness is critical to the understanding
of complex interconnected systems. For example, consider an ex-
ample of a power grid network that is susceptible to both natural
failures and targeted attacks. A natural failure occurs when a single
power substation fails due to erosion of parts or natural disasters.
However, when one substation fails, additional load is routed to
alternative substations, potentially causing a series of cascading
failures. Not all failures originate from natural causes, some come
from targeted attacks, such as enemy states hacking into the grid
to sabotage key equipment to maximally damage the operations
of the electrical grid. A natural counterpart to network robustness
is vulnerability, defined as a measure of a network’s susceptibility
to the dissemination of entities across the network [30], such as how
quickly a virus spreads across a computer network.
Challenges for robustness and vulnerability research. Unfor-
tunately, the nature of cross-disciplinary research also comes with
significant challenges. Oftentimes important discoveries made in
one field are not quickly disseminated, leading to missed innova-
tion opportunities. We believe a unified and easy-to-use software
framework is key to standardizing the study of network robust-
ness, helping accelerate reproducible research and dissemination
of ideas.
Tiger design and implementation.We present Tiger, an open-
sourced Python Toolbox for evaluatIng Graph vulnErability and
Robustness. Through Tiger, our goal is to catalyze network ro-
bustness research, promote reproducibility and amplify the reach
of novel ideas. In designing Tiger, we consider multiple complex
implementation decisions, including: (1) the criterion for inclusion
in the toolbox; (2) identifying and synthesizing a set of core robus-
tivity features needed by the community; and (3) the design and
implementation of the framework itself. We address the inclusion
criterion by conducting a careful analysis of influential and rep-
resentative papers (e.g., [3, 5, 19, 28, 30]) across top journals and
conferences from the relevant domains (e.g., ICDM, SDM, Physica
A, DMKD, Physical Review E), many of which we will discuss in
detail in this paper. We also include papers posted on arXiv, as
many cutting-edge papers are first released here.

Based on our analysis, we identify and include papers that tackle
one or more of the following fundamental tasks [3, 9, 19]: (1) mea-
suring network robustness and vulnerability; (2) understanding
network failure and attack mechanisms; (3) developing defensive
techniques; and (4) creating simulation tools to model processes.
From these papers, we select and implement a total of 44 attacks,
defenses and robustness measures, along with 4 simulation tools in
which they can be used. Due to a vibrant and growing community
of users, we develop Tiger in Python 3, leveraging key libraries,
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Figure 1: Tiger provides a number of important tools for graph vulnerability and robustness research, including graph

robustness measures, attack strategies, defense techniques and simulation models. Here, a Tiger user is visualizing a

computer virus simulation that follows the SIS infection model (effective strength 𝑠 = 3.21) on the Oregon-1 Autonomous
System network [27]. Top: defending only 5 nodes with Netshield [30], the number of infected entities is reduced to nearly

zero. Bottom: without any defense, the virus remains endemic.

such as NetworkX, SciPy, Numpy and Matplotlib. While excellent
alternative network analysis tools exist [1, 2, 13, 16, 21, 24, 25, 29],
many of them are domain specific (e.g., EoN [1], WNTR [24]) or
do not provide direct support for network robustness analysis (e.g.,
NetworkX [16], Gephi [2]). In contrast, Tiger complements existing
tools while providing key missing network robustness components.

1.1 Contributions

1. TIGER.We present Tiger, the first open-sourced Python tool-
box for evaluating network vulnerability and robustness of graphs.
Tiger contains 22 graph robustness measures with both original
and fast approximate versions when possible; 17 failure and attack
mechanisms; 15 heuristic and optimization based defense tech-
niques; and 4 simulation tools. To the best of our knowledge, this
makes Tiger the most comprehensive open-source framework for
network robustness analysis to date.

2. Open-Source & Permissive Licensing. Our goal is to democ-
ratize the tools needed to study network robustness; assisting re-
searchers and practitioners in the analysis of their own networks.

As such, we open-source the code on Github with an MIT license,
available at: https://github.com/safreita1/TIGER.

3. Extensive Documentation & Tutorials. We extensively doc-
ument the functionality of Tiger, providing a detailed description
and working example for many robustness measures, attacks, and
defense mechanisms. In addition, we provide detailed tutorials on
the analysis of network vulnerability and robustness on multiple
large-scale, real-world networks, including every figure and plot
shown in this paper. Users with Python familiarity will be able to
readily pick up Tiger for analysis with their own data.

4. Community Impact. Tiger helps enable reproducible research
and the timely dissemination of new and current ideas in the area
of network robustness and vulnerability analysis. Since this is a
large and highly active field across many disciplines of science
and engineering, we anticipate that Tiger will have significant
impact. As the field grows, we will update Tiger with additional
features such as multi-graphs, dynamic networks and rich attribute
information.

https://github.com/safreita1/TIGER
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Robustness Measure Category Application to Network Robustness

Vertex connectivity graph higher value ⇒ harder to disconnect graph ⇒ higher robustness
Edge connectivity graph higher value ⇒ harder to disconnect graph ⇒ higher robustness
Diameter graph lower value ⇒ stronger connectivity ⇒ higher robustness
Average distance graph lower value ⇒ stronger connectivity ⇒ higher robustness
Average inverse distance graph higher value ⇒ stronger connectivity ⇒ higher robustness
Average vertex betweenness graph lower value ⇒ more evenly distributed load ⇒ higher robustness
Average edge betweenness graph lower value ⇒ more evenly distributed load ⇒ higher robustness
Global clustering coefficient graph higher value ⇒ more triangles ⇒ higher robustness
Largest connected component graph lower value ⇒ more disconnected graph ⇒ lower robustness

Spectral radius adjacency larger value ⇒ stronger connectivity ⇒ higher robustness
Spectral gap adjacency higher value ⇒ fewer bottlenecks ⇒ higher robustness
Natural connectivity adjacency higher value ⇒ more alternative pathways ⇒ higher robustness
Spectral scaling adjacency lower value ⇒ fewer bottlenecks ⇒ higher robustness
Generalized robustness index adjacency lower value ⇒ fewer bottlenecks ⇒ higher robustness

Algebraic connectivity laplacian higher value ⇒ harder to disconnect ⇒ higher robustness
Number of spanning trees laplacian higher value ⇒ more alternative pathways ⇒ higher robustness
Effective resistance laplacian lower value ⇒ more alternative pathways ⇒ higher robustness

Table 1: Comparison of Tiger robustness measures. Measures are grouped based on whether they use the graph, adjacency
or Laplacian matrix. For each measure, we briefly describe it’s application to measuring network robustness. We omit

approximate measures since their application to robustness is the same as the non-approximate counterparts.

Terminology and Notation. As the study of graphs has been car-
ried out in a variety of fields (e.g., mathematics, physics, computer
science), the terminology often varies from field to field. As such,
we refer to the following word pairs interchangeably: (network,
graph), (vertex, node), (edge, link). Throughout the paper, we fol-
low standard practice and use capital bold letters for matrices (e.g.,
𝑨), lower-case bold letters for vectors (e.g., 𝒂). Also, we focus on
undirected and unweighted graphs.

2 TIGER ROBUSTNESS MEASURES

Tiger contains 22 robustness measures, grouped into one of three
categories depending on whether the measure utilizes the graph,
adjacency, or Laplacian matrix. In Table 1, we highlight each im-
plemented measure, the category it belongs to (graph, adjacency,
Laplacian), and its application to network robustness. Next, we
select 3 robustness measures, one from each of the three categories,
to extensively discuss. For detailed description and discussion of
all 22 measures, we refer the reader to the online documentation.

2.1 Example Measures

Average vertex betweenness (𝑏𝑣) of a graph 𝐺 = (𝒱, ℰ) is the
summation of vertex betweenness 𝑏𝑢 for every node 𝑢 ∈ 𝑉 , where
vertex betweenness for node 𝑢 is defined as the number of shortest
paths that pass through 𝑢 out of the total possible shortest paths

𝑏𝑣 =
∑
𝑢∈𝑉

∑
𝑠∈𝑉

∑
𝑡 ∈𝑉
𝑠≠𝑡≠𝑢

𝑛𝑠,𝑡 (𝑢)
𝑛𝑠,𝑡

(1)

where 𝑛𝑠,𝑡 (𝑢) is the number of shortest paths between 𝑠 and 𝑡
that pass through 𝑢 and 𝑛𝑠,𝑡 is the total number of shortest paths
between 𝑠 and 𝑡 [12]. Average vertex betweenness has a natural
connection to graph robustness since it measures the average load
on vertices in the network. The smaller the average the more robust
the network, since load is more evenly distributed across nodes.
Spectral scaling (𝜉) indicates if a network is simultaneously sparse
and highly connected, known as “good expansion” (GE) [11, 20].
Intuitively, we can think of a network with GE as a network lacking
bridges or bottlenecks. In order to determine if a network has
GE, [11] proposes to combine the spectral gap measure with odd
subgraph centrality 𝑆𝐶𝑜𝑑𝑑 , which measures the number of odd
length closed walks a node participates in. Formally, spectral scaling
is described in Equation 2,

𝜉 (𝐺) =

√√
1
𝑛

𝑛∑
𝑖=1

{𝑙𝑜𝑔[𝒖1 (𝑖)] − [𝑙𝑜𝑔𝑨 + 1
2
𝑙𝑜𝑔[𝑆𝐶𝑜𝑑𝑑 (𝑖)]]}2 (2)

where𝑨 = [𝑠𝑖𝑛ℎ(𝜆1)]−0.5, 𝑛 is the number of nodes, and 𝒖1 is the
first eigenvector of adjacency matrix 𝑨. The closer 𝜉 is to zero, the
better the expansion properties and the more robust the network.
Formally, a network is considered to have GE if 𝜉 < 10−2, the
correlation coefficient 𝑟 < 0.999 and the slope is 0.5.
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Figure 2: Error of 5 fast, approximate robustness measures supported by Tiger. Parameter 𝑘 represents the trade-off

between speed (low 𝑘) and precision (high 𝑘). To measure approximation efficacy, we vary 𝑘 ∈ [5, 300] in increments of 10 and

measure the absolute error between the approximate and original measure averaged over 30 runs on a clustered scale-free

graph with 300 nodes. [sf: need to say that this is relative error]

Effective resistance (𝑅) views a graph as an electrical circuit
where an edge (𝑖, 𝑗) corresponds to a resister of 𝑟𝑖 𝑗 = 1 Ohm and a
node 𝑖 corresponds to a junction. As such, the effective resistance
between two vertices 𝑖 and 𝑗 , denoted 𝑅𝑖 𝑗 , is the electrical resis-
tance measured across 𝑖 and 𝑗 when calculated using Kirchoff’s
circuit laws. Extending this to the whole graph, we say the effective
graph resistance 𝑅 is the sum of resistances for all distinct pairs of
vertices [9, 15]. Klein and Randic [23] proved this can be calculated
based on the sum of the inverse non-zero Laplacian eigenvalues:

𝑅 =
1
2

𝑛∑
𝑖, 𝑗

𝑅𝑖 𝑗 = 𝑛

𝑛∑
𝑖=2

1
𝜇𝑖

(3)

As a robustness measure, effective resistance measures how well
connected a network is, where a smaller value indicates a more
robust network [9, 15]. In addition, the effective resistance has many
desirable properties, including the fact that it strictly decreases
when adding edges, and takes into account both the number of
paths between node pairs and their length [10].

2.2 Measure Implementation & Evaluation

Our goal for Tiger is to implement each robustness measure in
a clear and concise manner to facilitate code readability, while
simultaneously optimizing for execution speed. Each robustness
measure is wrapped in a function that abstractsmathematical details
away from the user; and any default parameters are set for a balance
of speed and precision. Below we compare the efficacy of 5 fast,
approximate robustness measures, followed by an analysis of the
scalability of all 22 measures.
Approximate Measures. It turns out that a large number of ro-
bustness measures have difficulty scaling to large graphs. To help
address this, we implement and compare 5 fast approximate mea-
sure, three spectral based (natural connectivity, number of spanning
trees, effective resistance), and two graph based (average vertex
betweenness, average edge betweenness) [4, 5]. To approximate
natural connectivity we use the top-𝑘 eigenvalues of the adjacency
matrix as a low rank approximation [5, 28]. For the number of span-
ning trees and effective resistance we take the bottom-𝑘 eigenvalues

of the Laplacian matrix [5]. For graph measures, average vertex
betweenness and average edge betweenness, we randomly sample 𝑘
nodes to calculate centrality. In both cases, the parameter 𝑘 rep-
resents the trade-off between speed (low 𝑘) and precision (high
𝑘). When 𝑘 is equal to the number of nodes 𝑛 in the graph, the
approximate measure is equivalent to the original.

To determine the efficacy of each approximation measure we
vary 𝑘 ∈ [5, 300] in increments of 10, and measure the absolute
error between the approximate and original measure, averaged over
30 runs on a clustered scale free graph containing 300 nodes. In
Figure 2, we observe that average vertex betweenness accurately
approximates the original measure using ∼10% of the nodes in the
graph. This results in a significant speed-up, and is in line with prior
research [4]. While the absolute error for each spectral approxi-
mation is large, these approximations find utility in measuring the
relative change in graph robustness after a series of perturbations
(i.e., addition or removal of nodes/edges). While not immediately ob-
vious, this can enable the development a wide range of optimization
based defense techniques [5, 6].
Scalability. To help Tiger users determine which measures would
scale to large graphs, we compare and report the scalability of all
22 robustness measures on 5 clustered scale-free graphs ranging
from 100, 1k, 10k 100k, to 1M nodes, averaged over 10 random runs,
as shown in Figure 3. We compute every measure on each of the 5
graphs for 30minutes, and observe clear trends allowing us to assess
the measures’ potential to scale to larger graphs. For approximate
edge and vertex betweenness measures we set 𝑘 = 0.1𝑛, where 𝑛 is
the number of nodes [4]. For spectral measure we set 𝑘 = 30 [6]. We
find that 7 measures are highly scalable, i.e., running in less than
30 minutes on a 1M million node graph, with 2 notable runner-ups
that are able to run on a 100k graph in less than 30 minutes. We
consider the remaining measures to scale poorly.

3 TIGER ATTACKS

There are two primary ways a network can become damaged—(1)
natural failure and (2) targeted attack. Natural failures typically
occur when a piece of equipment breaks down from natural causes.
In the study of graphs, this would correspond to the removal of a
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Figure 3: Scalability of Tiger’s 22 robustness measures on a clustered scale free graph ranging from 100, 1k, 10k 100k, to 1M

nodes averaged over 10 runs. We find 7 measures are highly scalable i.e., runs in <30 minutes on a 1M node graph.

node or edge in the graph. While random network failures regularly
occur, they are typically less severe than targeted attacks. This has
been shown to be true across a range of graph structures [3, 33].
In contrast, targeted attacks carefully select nodes and edges in
the network for removal in order to maximally disrupt network
functionality. As such, we focus the majority of our attention to
targeted attacks. In Section 3.1, we provide a high-level overview of
several network failure and attack strategies. Then, in Section 3.2
we highlight 10 attack strategies implemented in Tiger.

3.1 Attack Strategies

We showcase an example attack in Figure 5 on the Kentucky KY-2
water distribution network [17]. The network starts under normal
conditions (far left), and at each step an additional node is removed
by the attacker (red nodes). After removing only 13 of the 814
nodes, the network is split into two separate regions. By step 27,
the network splits into four disconnected regions. In this simulation,
and in general, attack strategies rely on node and edge centrality
measures to identify candidates. Below, we highlight several attack
strategies [19] contained in Tiger.

Initial degree removal (ID) targets nodes with the highest degree
𝛿𝑣 . This has the effect of reducing the total number of edges in the
network as fast as possible [19]. Since this attack only considers its
neighbors when making a decision, it is considered a local attack.
The benefit of this locality is low computational overhead.

Initial betweenness removal (IB) targets nodes with high be-
tweenness centrality 𝑏𝑣 . This has the effect of destroying as many
paths as possible [19]. Since path information is aggregated from
across the network, this is considered a global attack strategy. Unfor-
tunately, global information comes with significant computational
overhead compared to a local attacks.

Recalculated degree (𝑅𝐷) and betweenness removal (𝑅𝐵) fol-
low the same process as 𝐼𝐷 and 𝐼𝐵, respectively, with one additional
step to recalculate the degree (or betweenness) distribution after
a node is removed. This recalculation often results in a stronger
attack, however, recalculating these distributions adds a significant
amount of computational overhead to the attack.

3.2 Comparing Strategies

To help Tiger users determine the effectiveness of attack strategies,
we evaluate 5 node and 5 edge attacks on the Kentucky KY-2 water
distribution network in Figure 4. We begin by analyzing each node
attack strategy—𝐼𝐷 , 𝑅𝐷 , 𝐼𝐵, 𝑅𝐵 and 𝑅𝑁𝐷 (random selection)—on
the left-side of Figure 4. Attack success is measured based on how
fractured the network becomes when removing nodes from the
network. We identify three key observations—(i) random node re-
moval (𝑅𝑁𝐷) is not an effective strategy on this network structure;
(ii) 𝑅𝐵 is the most effective attack strategy; and (iii) the remaining
three attacks are roughly equivalent, falling somewhere between
𝑅𝑁𝐷 and 𝑅𝐵.

Analyzing Figure 5, we can gain insight into why 𝑅𝐵 is the most
effective of the attacks. If we look carefully, we observe that certain
nodes (and edges) in the network act as key bridges between various
network regions. As a result, attacks able to identify these bridges
are highly effective in disrupting this network. In contrast, degree
based attacks are less effective, likely due to the balanced degree
distribution. The analysis is similar for edge based attacks.
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Figure 5: Tiger simulation of an RD node attack on the KY-2 water distribution network. Step 0: network starts under

normal conditions; at each step a node is removed by the attacker (red nodes). Step 13, 22 & 27: after removing only a few of

the 814 nodes, the network splits into two and three and four disconnected regions, respectively.

4 TIGER DEFENSES

The same centrality measures effective in attacking a network are
important to network defense (e.g., degree, betweenness, PageRank,
eigenvector, etc.). In fact, if an attack strategy is known a priori,
node monitoring can largely prevent an attack altogether. In Sec-
tion 4.1, we provide a high-level overview of several heuristic and
optimization based defense techniques. Then, in Section 4.2 we
show Tiger users how several defense techniques can be used to
robustify an attacked network.

4.1 Defense Strategies

We categorize defense techniques based on whether they operate
heuristically, modifying graph structure independent of a robust-
ness measure, or by optimizing for a particular robustness mea-
sure [5]. Within each category a network can be defended i.e.,
improve its robustness by—(1) edge rewiring, (2) edge addition, or
(iii) node monitoring. Edge rewiring is considered a low cost, less
effective version of edge addition. On the other hand, edge addi-
tion almost always provides stronger defense [3]. Node monitoring
provides an orthogonal mechanism to increase network robustness
by monitoring (or removing) nodes in the graph. This has an array
of applications, including: (i) preventing targeted attacks, (ii) miti-
gating cascading failures, and (iii) reducing the spread of network
entities. Below, we highlight several heuristic and optimization
based techniques contained in Tiger.

Heuristic Defenses. We overview 5 edge rewiring and addition
defenses [3], and compare the effectiveness of them in Section 4.2:

1. Random addition: adds an edge between two random nodes.
2. Preferential addition: adds an edge connecting two nodes with

the lowest degrees.
3. Random edge rewiring: removes a random edge and adds one

using (1).

4. Random neighbor rewiring: randomly selects neighbor of a node
and removes the edge. An edge is then added using (1).

5. Preferential random edge rewiring: selects an edge, disconnects
the higher degree node, and reconnects to a random one.

Optimization Defenses. We discuss the Netshield node monitor-
ing technique which identifies key nodes in a network to reduce
the spread of entity dissemination (e.g., viruses) [30]. To minimize
the spread of entities, Netshield minimizes the spectral radius of the
graph 𝜆1 by selecting the best set 𝑆 of 𝑘 nodes to remove from the
graph (i.e., maximize eigendrop). In order to evaluate the goodness
of a node set 𝑆 for removal, [30] proposes the Shield-value measure:

𝑆𝑣 (𝑆) =
∑
𝑖∈𝑆

2𝜆1𝒖1 (𝑖)2 −
∑
𝑖, 𝑗 ∈𝑆

𝐴(𝑖, 𝑗)𝒖 (𝑖)𝒖 ( 𝑗) (4)

The intuition behind this equation is to select nodes for monitoring
that have high eigenvector centrality (first term), while penalizing
neighboring nodes to prevent grouping (second term). We demon-
strate the utility of this defense mechanism in Section 5.

4.2 Comparing Strategies

To help users evaluate the effectiveness of defense techniques, we
compare 5 edge defenses on the Kentucky KY-2 water distribution
network, averaged over 10 runs, in Figure 6. The network is initially
attacked using the 𝑅𝐵 attack strategy (30 nodes removed), and the
success of each defense is measured based on how it can reconnect
the network by adding or rewiring edges in the network (higher is
better). Based on Figure 6, we identify three key observations—(i)
preferential edge addition performs the best; (ii) edge addition, in
general, outperforms rewiring strategies; and (iii) random neighbor
rewiring typically performs better than the other rewiring strate-
gies.
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5 TIGER SIMULATION TOOLS

We implement 4 broad and important types of robustness simula-
tion tools [3, 19, 22, 30, 32]—(1) dissemination of network entities,
(2) cascading failures (3) network attacks, see Section 3, and (4)
network defense, see Section 4. In Section 5.1, we discuss the im-
plementation of an infectious disease models and how defense
techniques implemented in Tiger can be used to eitherminimize or
maximize the network diffusion. Then, in Section 3, we discuss the
implementation of the cascading failure model and its interactions
with Tiger defense and attack strategies.

5.1 Dissemination of Network Entities

A critical concept in entity dissemination is network diffusion, which
attempts to capture the underlying mechanism enabling network
propagation. In order to augment this diffusion process, Tiger lever-
ages the defense techniques in Section 4 for use with two prominent
diffusion models: the flu-like susceptible-infected-susceptible (SIS)
model, and the vaccinated-like susceptible-infected-recovered (SIR)
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Figure 7: SIS simulation with 5 virus strengths on the

Oregon-1 Autonomous System network. No defense (left),

Netshield defense (right).

model [22]. For example, tominimize the ability of viruses to spread
we can monitor (remove) nodes in the graph to reduce graph con-
nectivity. On the other hand, if want tomaximize network diffusion
e.g., marketing campaign, we can use defense techniques like edge
rewiring or addition to increase graph connectivity. Below, we
highlight the SIS infectious disease model and how Tiger’s defense
techniques can help contain a simulated outbreak.
Design and Implementation. Each node in the SIS model can be
in one of two states, infected 𝐼 or susceptible 𝑆 . At each time step
𝑡 , an infected node 𝑣 has a probability 𝛽 of infecting each of it’s
uninfected neighbors 𝑢 ∈ 𝑁 (𝑣). After this, each infected node 𝑣
has a probability 𝛿 of healing and becoming susceptible again. The
relationship between the birth rate 𝛽 , death rate 𝛿 and the spectral
radius 𝜆1 of the graph has been a widely studied topic. In [31],
they show that the spectral radius of a graph is closely tied to the
epidemic threshold 𝜏 of a network in an SIS model. In particular,
they prove that 𝛽

𝛿
< 𝜏 = 1

𝜆1
. This means for a given virus strength

𝑠 , an epidemic is more likely to occur on a graph with larger 𝜆1.
As such, we say that a virus has an effective strength 𝑠 = 𝜆1 · 𝑏/𝑑 ,
where a larger 𝑠 means a stronger virus [30].
Simulating dissemination of entities. To help users visualize
the dissemination process, we enable them to create visuals like
Figure 1, where we run an SIS computer virus simulation (𝑠 = 3.21)
on the Oregon-1 Autonomous System network [27]. The top of
Figure 1 shows the virus progression when defending 5 nodes
selected by Netshield [30]. By time step 1000, the virus has nearly
died out. The bottom of Figure 1 shows that the virus remains
endemic without defense. To assist users in summarizing model
results over many configurations, we enable them to create plots
like Figure 7, which show results for 5 SIS effective virus strengths
𝑠 = {0, 3.21, 6.42, 9.63, 12.84} over a period of 5000 steps.

5.2 Cascading Failures

Cascading failures often arise as a result of natural failures or tar-
geted attacks in a network. Consider an electrical grid where a
central substation goes offline. In order to maintain the distribution
of power, neighboring substations have to increase production in
order to meet demand. However, if this is not possible, the neigh-
boring substation fails, which in turn causes additional neighboring
substations to fail. The end result is a series of cascading failures
i.e., a blackout [8]. While cascading failures can occur in a variety
of network types e.g., water, electrical, communication, we focus
on the electrical grid. Below, we discuss the design and implemen-
tation of the cascading failure model and how Tiger can be used
to both induce and prevent cascading failures using the attack and
defense mechanisms discussed in Sections 3 and 4, respectively.
Design and Implementation. There are 3 main processes govern-
ing the network simulation—(1) capacity of each node 𝑐𝑣 ∈ [0, 1];
(2) load of each node 𝑙𝑣 ∈ 𝑈 (0, 𝑙𝑚𝑎𝑥 ); and (3) network redundancy
𝑟 ∈ [0, 1]. The capacity of each node 𝑐𝑣 is the the maximum load
a node can handle, which is set based on the node’s normalized
betweenness centrality [18]. The load of each node 𝑙𝑣 represents the
fraction of maximum capacity 𝑐𝑣 that the node operates at. Load for
each node 𝑐𝑣 is set by uniformly drawing from𝑈 (0, 𝑙𝑚𝑎𝑥 ), where
𝑙𝑚𝑎𝑥 is the maximum initial load. Network redundancy 𝑟 represents
the amount of reserve capacity present in the network i.e., auxiliary



Conference’17, July 2017, Washington, DC, USA Freitas et al.

Cascading Failure on Electrical Grid

step 1step 1 5050 7070

Figure 8: Tiger cascading failure simulation on the US power grid network when 4 nodes are overloaded according to the ID

attack strategy. Time step 1: shows the network under normal conditions. Time step 50: we observe a series of failures

originating from the bottom of the network. Time step 70: most of the network has collapsed.

support systems. At the beginning of the simulation, we allow the
user to attack and defend the network according to the node attack
and defense strategies in Sections 3 and 4, respectively. When a
node is attacked it becomes “overloaded”, causing it to fail and
requiring the load be distributed to the neighbors. When defending
a node we increase it’s capacity to protect against attacks.
Simulating cascading failures. To help users visualize cascading
failures induced by targeted attacks, we enable them to create vi-
suals like Figure 8, where we overload 4 nodes selected by the ID
attack strategy on the US power grid dataset [32] (𝑙𝑚𝑎𝑥 = 0.8). Node
size represents capacity i.e., larger size→ higher capacity, and color
indicates the load of each node on a gradient scale from blue (low

0 40 80

0.2

0

0.4

0.6

0.8

1

redundancy ≥ 50%

40%40%

20%20%

0%0%

120
Time step

Redundancy vs node attack on electrical grid

La
rg

es
tc

on
ne

ct
ed

co
m

po
ne

nt
(n

or
m

.)

Figure 9: Effect of network redundancy 𝑟 on the US power

grid where 4 nodes are overloaded using ID. When 𝑟 ≥ 50%
the network is able to redistribute the increased load. [sf:
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(green, yellow, orange, red)]

load) to red (high load); dark red indicates node failure (overloaded).
Time step 1 shows the network under normal conditions; at step 50
we observe a series of failures originating from the bottom of the
network; by step 70 most of the network has collapsed. To assist
users in summarizing simulation results over many configurations,
we enable them to create plots like Figure 9, which shows the effect
of network redundancy 𝑟 when 4 nodes are overloaded by the ID
attack strategy. At 50% redundancy, we observe a critical threshold
where the network is able to redistribute the increased load. For
𝑟 < 50%, the cascading failure can be delayed but not prevented.

6 CONCLUSION

The study of network robustness is a critical tool in the charac-
terization and understanding of complex interconnected systems.
Through analyzing and understanding the robustness of these net-
works we can: (1) quantify network vulnerability and robustness,
(2) augment a network’s structure to resist attacks and recover from
failure, and (3) control the dissemination of entities on the network
(e.g., viruses, propaganda). While significant research has been con-
ducted on all of these tasks, no comprehensive open-source toolbox
currently exists to assist researchers and practitioners in this im-
portant topic. This lack of available tools hinders reproducibility
and examination of existing work, development of new research,
and dissemination of new ideas. To address these challenges, we
contribute Tiger, an open-sourced Python toolbox containing 22
graph robustness measures with both original and fast approximate
versions; 17 failure and attack strategies; 15 heuristic and optimiza-
tion based defense techniques; and 4 simulation tools. Tiger is
open-sourced at: https://github.com/safreita1/TIGER.

https://github.com/safreita1/TIGER
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