
REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild

Rahul Duggal*1, Scott Freitas*1, Cao Xiao2, Duen Horng (Polo) Chau1, Jimeng Sun1,3
{rahulduggal,safreita,polo}@gatech.edu,cao.xiao@iqvia.com,jimeng@illinois.edu

Georgia Institute of Technology1, IQVIA2, University of Illinois Urbana-Champaign3

ABSTRACT

In recent years, significant attention has been devoted towards
integrating deep learning technologies in the healthcare domain.
However, to safely and practically deploy deep learning models
for home health monitoring, two significant challenges must be
addressed: the models should be (1) robust against noise; and (2)
compact and energy-efficient. We propose Rest, a new method that
simultaneously tackles both issues via 1) adversarial training and
controlling the Lipschitz constant of the neural network through
spectral regularization while 2) enabling neural network compres-
sion through sparsity regularization. We demonstrate that Rest
produces highly-robust and efficient models that substantially out-
perform the original full-sized models in the presence of noise. For
the sleep staging task over single-channel electroencephalogram
(EEG), the Rest model achieves a macro-F1 score of 0.67 vs. 0.39
achieved by a state-of-the-art model in the presence of Gaussian
noise while obtaining 19× parameter reduction and 15×MFLOPS
reduction on two large, real-world EEG datasets. By deploying
these models to an Android application on a smartphone, we quan-
titatively observe that Rest allows models to achieve up to 17×
energy reduction and 9× faster inference. We open source the code
repository with this paper: https://github.com/duggalrahul/REST.

CCS CONCEPTS

• Applied computing → Health informatics; • Computing

methodologies→ Supervised learning by classification.

KEYWORDS

deep learning, compression, adversarial, sleep staging

1 INTRODUCTION

As many as 70 million Americans suffer from sleep disorders that
affects their daily functioning, long-term health and longevity. The
long-term effects of sleep deprivation and sleep disorders include
an increased risk of hypertension, diabetes, obesity, depression,
heart attack, and stroke [1]. The cost of undiagnosed sleep apnea
alone is estimated to exceed 100 billion in the US [28].

A central tool in identifying sleep disorders is the hypnogram—
which documents the progression of sleep stages (REM stage,Non-
REM stages N1 to N3, andWake stage) over an entire night (see
Fig. 1, top). The process of acquiring a hypnogram from raw sen-
sor data is called sleep staging, which is the focus of this work.
Traditionally, to reliably obtain a hypnogram the patient has to un-
dergo an overnight sleep study—called polysomnography (PSG)—at
a sleep lab while wearing bio-sensors that measure physiological
signals, which include electroencephalogram (EEG), eyemovements

* Both authors contributed equally to this research.

Rest
Model

Expert
Scored

SOTA
Model

W

N1

N2

N3

REM

W

N1

N2

N3

REM

W

N1

N2

N3

REM

0 200 400 600 800 1000

Hypnogram Scoring in Noisy EnvironmentHypnogram Scoring in Noisy Environment

Efficiency Measurements

Inference
Time (s)

Energy
Usage (J)

1143

123

355

57

Rest is 9x more efficient

Rest is 6x faster

SOTA (state-of-the-art)

SOTA

Time

Figure 1: Top: we generate hypnograms for a patient in the

SHHS test set. In the presence of Gaussian noise, our Rest-

generated hypnogram closely matches the contours of the

expert-scored hypnogram. Hypnogram generated by a state-

of-the-art (SOTA) model by Sors et al. [32] is considerably

worse. Bottom:wemeasure energy consumed (in Joules) and

inference time (in seconds) on a smartphone to score one

night of EEG recordings. Rest is 9X more energy efficient

and 6X faster than the SOTA model.

(EOG), muscle activity or skeletal muscle activation (EMG), and
heart rhythm (ECG). The PSG data is then analyzed by a trained
sleep technician and a certified sleep doctor to produce a PSG re-
port. The hypnogram plays an essential role in the PSG report,
where it is used to derive many important metrics such as sleep
efficiency and apnea index. Unfortunately, manually annotating
this PSG is both costly and time consuming for the doctors. Recent
research has proposed to alleviate these issues by automatically
generating the hypnogram directly from the PSG using deep neural
networks [6, 34]. However, the process of obtaining a PSG report
is still costly and invasive to patients, reducing their participation,
which ultimately leads to undiagnosed sleep disorders [33].

One promising direction to reduce undiagnosed sleep disorders is
to enable sleep monitoring at the home using commercial wearables
(e.g., Fitbit, Apple Watch, Emotiv) [21]. However, despite significant
research advances, a recent study shows that wearables using a

https://github.com/duggalrahul/REST

WWW ’20, April 20–24, 2020, Taipei, Taiwan Duggal & Freitas, et al.

EEG Sensor
REM

Wake
Vulnerable to noise

Vanilla Model
X

Noisy REM Signal

Gaussian Noise

Robust + Sparse
R��� 3: Re-train Model2: PruneModel1: TrainModel

LADV + LSPCLADV+ LSPC+ LSPA

R��� P������R��� P������

Figure 2: Rest Overview: (from left) When a noisy EEG signal belonging to the REM (rapid eye movement) sleep stage enters

a traditional neural network which is vulnerable to noise, it gets wrongly classified as a Wake sleep stage. On the other hand,

the same signal is correctly classified as the REM sleep stage by the Restmodel which is both robust and sparse. (From right)

Rest is a three step process involving (1) training the model with adversarial training, spectral regularization and sparsity

regularization (2) pruning the model and (3) re-training the compact model.

single sensor (e.g., single lead EEG) often have lower performance
for sleep staging, indicating a large room for improvement [3].

1.1 Contributions

Our contributions are two-fold—(i) we identify emerging research
challenges for the task of sleep monitoring in the wild; and (ii) we
propose Rest, a novel framework that addresses these issues.

I. New Research Challenges for Sleep Monitoring.

• C1. Robustness to Noise.We observe that state-of-the-art deep
neural networks (DNN) are highly susceptible to environmental
noise (Fig. 1, top). In the case of wearables, noise is a serious
consideration since bioelectrical signal sensors (e.g., electroen-
cephalogram “EEG”, electrocardiogram “ECG”) are commonly
susceptible to Gaussian and shot noise, which can be introduced
by electrical interferences (e.g., power-line) and user motions
(e.g., muscle contraction, respiration) [5, 8, 10, 11]. This poses a
need for noise-tolerant models. In this paper, we show that adver-
sarial training and spectral regularization can impart significant
noise robustness to sleep staging DNNs (see top of Fig 1).
• C2. Energy andComputational Efficiency.Mobile deep learn-
ing systems have traditionally offloaded compute intensive in-
ference to cloud servers, requiring transfer of sensitive data and
assumption of available Internet. However, this data uploading
process is difficult for many healthcare scenarios because of—(1)
privacy: individuals are often reluctant to share health infor-
mation as they consider it highly sensitive; and (2) accessibil-
ity: real-time home monitoring is most needed in resource-poor
environments where high-speed Internet may not be reliably
available. Directly deploying a neural network to a mobile phone
bypasses these issues. However, due to the constrained computa-
tion and energy budget of mobile devices, these models need to be
fast in speed and parsimonious with their energy consumption.

II. Noise-robust and Efficient Sleep Monitoring. Having iden-
tified these two new research challenges, we propose Rest, the
first framework for developing noise-robust and efficient neural
networks for home sleep monitoring (Fig. 2). Through Rest, our
major contributions include:

• “Robust and Efficient Neural Networks for Sleep Monitoring” By
integrating a novel combination of three training objectives, Rest
endows a model with noise robustness through (1) adversarial
training and (2) spectral regularization; and promotes energy and
computational efficiency by enabling compression through (3)
sparsity regularization.
• Extensive evaluationWe benchmark the performance of Rest
against competitive baselines, on two real-world sleep staging
EEG datasets—Sleep-EDF from Physionet and Sleep Heart Health
Study (SHHS). We demonstrate that Rest produces highly com-
pact models that substantially outperform the original full-sized
models in the presence of noise. Restmodels achieves a macro-F1
score of 0.67 vs. 0.39 for the state-of-the-art model in the pres-
ence of Gaussian noise, with 19× parameter and 15× MFLOPS
reduction.
• Real-world deployment.We deploy a Restmodel onto a Pixel
2 smartphone through an Android application performing sleep
staging. Our experiments reveal Rest achieves 17× energy re-
duction and 9× faster inference on a smartphone, compared to
uncompressed models.

2 RELATEDWORK

In this section we discuss related work from three areas—(1) the task
of sleep stage prediction, (2) robustness of deep neural networks
and (3) compression of deep learning models.

2.1 Sleep-Stage Prediction

Sleep staging is the task of annotating a polysomnography (PSG)
report into a hypnogram, where 30 second sleep intervals are anno-
tated into one of five sleep stages (W, N1, N2, N3, REM). Recently,
significant effort has been devoted towards automating this annota-
tion process using deep learning [2, 6, 9, 29, 32, 39], to name a few.
While there exists a large body of research in this area—two works
in particular look at both single channel [6] and multi-channel [9]
deep learning architectures for sleep stage prediction on EEG. In
[6], the authors develop a deep learning architecture (SLEEPNET)
for sleep stage prediction that achieves expert-level accuracy on

REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20–24, 2020, Taipei, Taiwan

EEG data. In [9], the authors develop a multi-modal deep learning
architecture for sleep stage prediction that achieves state-of-the-art
accuracy. As we demonstrate later in this paper (Section 4.5), these
sleep staging models are frequently susceptible to noise and suffer
a large performance drop in its presence (see Figure 1). In addition,
these DNNs are often overparameterized (Section 4.6), making de-
ployment to mobile devices and wearables difficult. Through Rest,
we address these limitations and develop noise robust and efficient
neural networks for edge computing.

2.2 Noise & Adversarial Robustness

Adversarial robustness seeks to ensure that the output of a neural
network remains unchanged under a bounded perturbation of the
input; or in other words, prevent an adveresary from maliciously
perturbing the data to fool a neural network. Adversarial deep learn-
ing was popularized by [17], where they showed it was possible to
alter the class prediction of deep neural network models by care-
fully crafting an adversarially perturbed input. Since then, research
suggests a strong link between adversarial robustness and noise
robustness [15, 20, 35]. In particular, [15] found that by performing
adversarial training on a deep neural network, it becomes robust
to many forms of noise (e.g., Gaussian, blur, shot, etc.). In contrast,
they found that training a model on Gaussian augmented data led
to models that were less robust to adversarial perturbations. We
build upon this finding of adversarial robustness as a proxy for
noise robustness and improve upon it through the use of spectral
regularization; while simultaneously compressing the model to a
fraction of its original size for mobile devices.

2.3 Model Compression

Model compression aims to learn a reduced representation of the
weights that parameterize a neural network; shrinking the computa-
tional requirements for memory, floating point operations (FLOPS),
inference time and energy. Broadly, prior art can be classified into
four directions—pruning [19], quantization [31], low rank approx-
imation [37] and knowledge distillation [22]. For Rest, we focus
on structured (channel) pruning thanks to its performance benefits
(speedup, FLOP reduction) and ease of deployment with regular
hardware. In structured channel pruning, the idea is to assign a mea-
sure of importance to each filter of a convolutional neural network
(CNN) and achieve desired sparsity by pruning the least impor-
tant ones. Prior work demonstrates several ways to estimate filter
importance—magnitude of weights [24], structured sparsity regular-
ization [36], regularization on activation scaling factors [26], filter
similarity [13] and discriminative power of filters [40]. Recently
there has been an attempt to bridge the area of model compres-
sion with adversarial robustness through connection pruning [18]
and quantization [25]. Different from previous work, Rest aims to
compress a model by pruning whole filters while imparting noise
tolerance through adversarial training and spectral regularization.
Rest can be further compressed through quantization [25].

3 REST: NOISE-ROBUST & EFFICIENT

MODELS

Rest is a new method that simultaneously compresses a neural
network while developing both noise and adversarial robustness.

3.1 Overview

Our main idea is to enable Rest to endow models with these prop-
erties by integrating three careful modifications of the traditional
training loss function. (1) The adversarial training term, which
builds noise robustness by training on adversarial examples (Sec-
tion 3.2); (2) the spectral regularization term, which adds to the
noise robustness by constraining the Lipschitz constant of the neu-
ral network (Section 3.3); and (3) the sparsity regularization term
that helps to identify important neurons and enables compression
(Section 3.4). Throughout the paper, we follow standard notation
and use capital bold letters for matrices (e.g., A), lower-case bold
letters for vectors (e.g., a).

3.2 Adversarial Training

The goal of adversarial training is to generate noise robustness
by exposing the neural network to adversarially perturbed inputs
during the training process. Given a neural network f (X;W) with
input X, weightsW and corresponding loss function L(f (X;W), y),
adversarial training aims at solving the following min-max problem:

min
W

[
E

X,y∼D

(
max
δ ∈S

L(f (X + δ ;W), y)
)]

(1)

Here D is the unperturbed dataset consisting of the clean EEG
signals X ∈ RKin×KL (Kin is the number of channels and KL is
the length of the signal) along with their corresponding label y.
The inner maximization problem in (1) embodies the goal of the
adversary—that is, produce adversarially perturbed inputs (i.e.,
X + δ) that maximize the loss function L. On the other hand, the
outer minimization term aims to build robustness by countering
the adversary through minimizing the expected loss on perturbed
inputs.

Maximizing the inner loss term in (1) is equivalent to finding
the adversarial signal Xp = X + δ that maximally alters the loss
function L within some bounded perturbation δ ∈ S . Here S is
the set of allowable perturbations. Several choices exist for such
an adversary. For Rest, we use the iterative Projected Gradient
Descent (PGD) adversary since it’s one of the strongest first order
attacks [27]. Its operation is described below in Equation 2.

X
(t+1)
p = X

(t)
p + Πτ

[
ϵ · sign

{
∇
X
(t)
p

L
(
f (X(t)p ;W), y

) }]
(2)

Here X(0)p = X and at every step t , the previous perturbed input
X
(t−1)
p is modifiedwith the sign of the gradient of the loss, multiplied

by ϵ (controls attack strength). Πτ is a function that clips the input
at the positions where it exceeds the predefined L∞ bound τ . Finally,
after niter iterations we have the Rest adversarial training term
Ladv in Equation 3.

Ladv = L(f (X(niter)
p ;W), y) (3)

3.3 Spectral Regularizer

The second term in the objective function is the spectral regulariza-
tion term, which aims to constrain the change in output of a neural
network for some change in input. The intuition is to suppress the
amplification of noise as it passes through the successive layers of

WWW ’20, April 20–24, 2020, Taipei, Taiwan Duggal & Freitas, et al.

Algorithm 1: Noise Robust & Efficient Neural Network Training (Rest)
Input: Model weights W, EEG signal X and label y from dataset D, spectral regularization λo , sparsity regularization λд , learning rate

α , perturbation strength ϵ , maximum PGD iterations niter and model sparsity s
Output: Noise robust, compressed neural network
(1) Train the full model with Rest loss LR :

for epoch = 1 to N do

for minibatch B ⊂ D do

for X ∈ B do

X
(1)
p = X

for k=1 to niter do
X
(k+1)
p = X

(k)
p + Πτ (ϵ · sign(∇

X
(k)
p

L(f (X(k)p ;W), y)))
Wgrad ← E

X,y∼D
|▽WLR(Xp, y;W)|

where LR = L(f (Xp ;W), y)︸ ︷︷ ︸
adversarial training

+ λo

N∑
layer l=1

∥(W(l))TW(l) − I∥2︸ ︷︷ ︸
spectral regularization

+ λд

N∑
layer l=1

∥γ (l)∥1︸ ︷︷ ︸
sparsity regularization

W←W − α ·Wgrad

(2) Prune the trained model:

Globally prune filters fromW having smallest γ values until nf (W
′)

nf (W) ≤ s . Constrain layerwise sparsity so nf (W′(l))
nf (W(l))

≥ 0.1.

(3) Re-train the pruned model:

Retrain compressed network f (X;W′) using adversarial training and spectral regularization (no sparsity regularization).

a neural network. In this section we show that an effective way
to achieve this is via constraining the Lipschitz constant of each
layer’s weights.

For a real valued function f : R→ R the Lipschitz constant is
a positive real value C such that | f (x1) − f (x2)| ≤ C |x1 − x2 |. If
C > 1 then the change in input is magnified through the function
f . For a neural net, this can lead to input noise amplification. On
the other hand, if C < 1 then the noise amplification effect is
diminished. This can have the unintended consequence of reducing
the discriminative capability of a neural net. Therefore our goal is to
set the Lipschitz constant C = 1. The Lipschitz constant for the lth
fully connected layer parameterized by the weight matrixW(l) ∈
RKin×Kout is equivalent to its spectral norm ρ(W(l)) [12]. Here the
spectral norm of amatrixW is the square root of the largest singular
value of WT

W. The spectral norm of a 1-D convolutional layer
parameterized by the tensorW(l) ∈ RKout×Kin×Kl can be realized by
reshaping it to a matrix W

(l) = RKout×(KinKl) and then computing
the largest singular value.

A neural network of N layers can be viewed as a function f (·)
composed of N sub-functions f (x) = f1(·) ◦ f2(·) ◦ ... fN (x). A
loose upper bound for the Lipschitz constant of f is the product
of Lipschitz constants of individual layers or ρ(f) ≤ ∏N

i=1 ρ(fi)
[12]. The overall Lipschitz constant can grow exponentially if the
spectral norm of each layer is greater than 1. On the contrary, it
could go to 0 if spectral norm of each layer is between 0 and 1. Thus
the ideal case arises when the spectral norm for each layer equals
1. This can be achieved in several ways [12, 14, 38], however, one
effective way is to encourage orthonormality in the columns of the
weight matrix W through the minimization of ∥WT

W − I∥ where

I is the identity matrix. This additional loss term helps regulate the
singular values and bring them close to 1. Thus we incorporate the
following spectral regularization term into our loss objective, where
λo is a hyperparameter controlling the strength of the spectral
regularization.

LSpectral = λo

N∑
i=1
∥(W(i))TW(i) − I∥2 (4)

3.4 Sparsity Regularizer & Rest Loss Function

The third term of the Rest objective function consists of the sparsity
regularizer. With this term, we aim to learn the important filters in
the neural network. Once these are determined, the original neural
network can be pruned to the desired level of sparsity.

The incoming weights for filter i in the lth fully connected (or 1-
D convolutional) layer can be specified asW(l)i, : ∈ R

Kin (orW(l)i, :, : ∈
RKin×KL). We introduce a per filter multiplicand γ

(l)
i that scales

the output activation of the ith neuron in layer l . By controlling
the value of this multiplicand, we realize the importance of the
neuron. In particular, zeroing it amounts to dropping the entire filter.
Note that the L0 norm on the multiplicand vector ∥γ (l)∥0, where
γ (l) ∈ RKout , can naturally satisfy the sparsity objective since it
counts the number of non zero entries in a vector. However since
the L0 norm is a nondifferentiable function, we use the L1 norm
as a surrogate [23, 26, 36] which is amenable to backpropagation
through its subgradient.

To realize the per filter multiplicand γ (l)i , we leverage the per
filter multiplier within the batch normalization layer [26]. In most

REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20–24, 2020, Taipei, Taiwan

modern networks, a batchnorm layer immediately follows the con-
volutional/linear layers and implements the following operation.

B(l)i =
©«
A
(l) − µ(l)i

σ (l)i

ª®¬γ (l)i + β (l)i (5)

HereA(l)i denotes output activation of filter i in layer l while B(l)i
denotes its transformation through batchnorm layer l ; µ(l) ∈ RKout ,
σ (l) ∈ RKout denote the mini-batch mean and standard deviation
for layer l ’s activations; and γ (l) ∈ RKout and β (l) ∈ RKout are
learnable parameters. Our sparsity regularization is defined on γ (l)
as below, where λд is a hyperparameter controlling the strength of
sparsity regularization.

LSparsity = λд

N∑
i=1
∥γ (l)∥1 (6)

The sparsity regularization term (6) promotes learning a subset
of important filters while training the model. Compression then
amounts to globally pruning filters with the smallest value of mul-
tiplicands in (5) to achieve the desired model compression. Pruning
typically causes a large drop in accuracy. Once the pruned model is
identified, we fine-tune it via retraining.

Now that we have discussed each component of Rest, we present
the full loss function in (7) and the training process in Algorithm 1.
A pictorial overview of the process can be seen in Figure 2.

LR = L(f (Xp ;W), y)︸ ︷︷ ︸
adversarial training

+ λo

N∑
i=1
∥(W(i))TW(i) − I∥2︸ ︷︷ ︸

spectral regularization

+ λд

N∑
i=1
∥γ (l)∥1︸ ︷︷ ︸

sparsity regularization

(7)

4 EXPERIMENTS

We compare the efficacy of Rest neural networks to four baseline
models (Section 4.2) on two publicly available EEG datasets—Sleep-
EDF from Physionet [16] and Sleep Heart Health Study (SHHS)
[30]. Our evaluation focuses on two broad directions—noise ro-

bustness and model efficiency. Noise robustness compares the
efficacy of each model when EEG data is corrupted with three types
of noise: adversarial, Gaussian and shot. Model efficiency compares
both static (e.g., model size, floating point operations) and dynamic
measurements (e.g., inference time, energy consumption). For dy-
namic measurements which depend on device hardware, we deploy
each model to a Pixel 2 smartphone.

4.1 Datasets

Our evaluation uses two real-world sleep staging EEG datasets.
• Sleep-EDF: This dataset consists of data from two studies—age
effect in healthy subjects (SC) and Temazepam effects on sleep
(ST). Following [34], we use whole-night polysomnographic sleep
recordings on 40 healthy subjects (one night per patient) from

SC. It is important to note that the SC study is conducted in
the subject’s homes, not a sleep center and hence this dataset is
inherently noisy. However, the sensing environment is still rela-
tively controlled since sleep doctors visited the patient’s home
to setup the wearable EEG sensors. After obtaining the data, the
recordings are manually classified into one of eight classes (W,
N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN); we follow the
steps in [34] and merge stages N3 and N4 into a single N3 stage
and exclude MOVEMENT and UNKNOWN stages to match the
five stages of sleep according to the American Academy of Sleep
Medicine (AASM) [4]. Each single channel EEG recording of 30
seconds corresponds to a vector of dimension 1 × 3000. Similar
to [32], while scoring at time i , we include EEG recordings from
times i − 3, i − 2, i − 1, i . Thus we expand the EEG vector by con-
catenating the previous three time steps to create a vector of size
1 × 12000. After pre-processing the data, our dataset consists of
42,191 EEG recordings, each described by a 12,000 length vector
and assigned a sleep stage label from Wake, N1, N2, N3 and REM
using the Fpz-Cz EEG sensor (see Table 1 for sleep stage break-
down). Following standard practice [34], we divide the dataset
on a per-patient, whole-night basis, using 80 % for training, 10 %
for validation, and 10 % for testing. That is, a single patient is
recorded for one night and can only be in one of the three sets
(training, validation, testing). The final number of EEG record-
ings in their respective splits are 34,820, 5345 and 3908. While
the number of recordings appear to differ from the 80-10-10 ratio,
this is because the data is split over the total number of patients,
where each patient is monitored for a time period of variable
length (9 hours ± few minutes.)
• Sleep Heart Health Study (SHHS): The Sleep Heart Health
Study consists of two rounds of polysomnographic recordings
(SHHS-1 and SHHS-2) sampled at 125 Hz in a sleep center envi-
ronment. Following [32], we use only the first round (SHHS-1)
containing 5,793 polysomnographic records over two channels
(C4-A1 and C3-A2). Recordings are manually classified into one
of six classes (W, N1, N2, N3, N4 and REM). As suggested in [4],
we merge N3 and N4 stages into a single N3 stage (see Table 1 for
sleep stage breakdown). We use 100 distinct patients randomly
sampled from the original dataset (one night per patient). Similar
to [32], we look at three previous time steps in order to score the
EEG recording at the current time step. This amounts to concate-
nating the current EEG recording of size 1×3750 (equal to 125 Hz
× 30 Hz) to generate an EEG recording of size 1×15000. After this
pre-processing, our dataset consists of 100,065 EEG recordings,
each described by a 15,000 length vector and assigned a sleep
stage label from the same 5 classes using the Fpz-Cz EEG sensor.
We use the same 80-10-10 data split as in Sleep-EDF, resulting

Dataset W N1 N2 N3(N4) REM Total

Sleep-EDF 8,168 2,804 17,799 5,703 7,717 42,191
SHHS 28,854 3,377 41,246 13,409 13,179 100,065

Table 1: Dataset summary outlining thenumber of 30 second

EEG recordings belonging to each sleep stage class.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Duggal & Freitas, et al.

in 79,940 EEG recordings for training, 9999 for validation, and
10,126 for testing.

4.2 Model Architecture and Configurations

We use the sleep staging CNN architecture proposed by [32], since
it achieves state-of-the-art accuracy for sleep stage classification
using single channel EEG. We implement all models in PyTorch
0.4. For training and evaluation, we use a server equipped with
an Intel Xeon E5-2690 CPU, 250GB RAM and 8 Nvidia Titan Xp
GPUs. Mobile device measurements use a Pixel 2 smartphone with
an Android application running Tensorflow Lite1. With [32] as the
architecture for all baselines below, we compare the following 6
configurations:

(1) Sors [32]: Baseline neural network model trained on unper-
turbed data. This model contains 12 1-D convolutional layers
followed by 2 fully connected layers and achieves state-of-the-
art performance on sleep staging using single channel EEG.

(2) Liu [26]: We train on unperturbed data and compress the Sors
model using sparsity regularization as proposed in [26].

(3) Blanco [7]:We use same setup from Liu above. During test time,
the noisy test input is filtered using a bandpass filter with cutoff
0.5Hz-40Hz This technique is commonly used for removing
noise in EEG analysis [7].

(4) Ford [15]: We train and compress the Sors model with spar-
sity regularization on input data perturbed by Gaussian noise.
Gaussian training parameter cд = 0.2 controls the perturbation
strength during training; identified through a line search in
Section 4.4.

(5) Rest (A): Our compressed Sors model obtained through adver-
sarial training and sparsity regularization. We use the hyperpa-
rameters: ϵ = 10, niter= 5/10 (SHHS/Sleep-EDF), where ϵ is a
key variable controlling the strength of adversarial perturbation
during training. The optimal ϵ value is determined through a
line search described in Section 4.4.

(6) Rest (A+S): Our compressed Sors model obtained through
adversarial training, spectral and sparsity regularization. We
set the spectral regularization parameter λo = 3 × 10−3 and
sparsity regularization parameter λд = 10−5 based on a grid
search in Section 4.4.

All models are trained for 30 epochs using SGD. The initial learn-
ing rate is set to 0.1 and multiplied by 0.1 at epochs 10 and 20; the
weight decay is set to 0.0002. All compressed models use the same
compression method, consisting of weight pruning followed by
model re-training. The sparsity regularization parameter λд = 10−5
is identified through a grid search with λo (after determining ϵ
through a line search). Detailed analysis of the hyperparameter
selection for ϵ , λo and λд can be found in Section 4.4. Finally, we
set a high sparsity level s = 0.8 (80% neurons from the original
networks were pruned) after observation that the models are over-
parametrized for the task of sleep stage classification.

1TensorFlow Lite: https://www.tensorflow.org/lite

4.3 Evaluation Metrics

Noise robustness metrics To study the noise robustness of each
model configuration, we evaluate macro-F1 score in the presence
of three types of noise: adversarial, Gaussian and shot. We select
macro-F1 since it is a standard metric for evaluating classification
performance in imbalanced datasets. Adversarial noise is defined at
three strength levels through ϵ = 2/6/12 in Equation 2; Gaussian
noise at three levels through cд = 0.1/0.2/0.3 in Equation 8; and
shot noise at three levels through cs = 5000/2500/1000 in Equa-
tion 9. These parameter values are chosen based on prior work
[20, 27] and empirical observation. For evaluating robustness to
adversarial noise, we assume the white box setting where the at-
tacker has access to model weights. The formulation for Gaussian
and shot noise is in Equation 8 and 9, respectively.

Xgauss = X + N (0, cg · σtrain) (8)

In Equation 8, σtrain is the standard deviation of the training
data and N is the normal distribution. The noise strength—low,
medium and high—corresponds to cд = 0.1/0.2/0.3.

Xnorm =
X − xmin

xmax − xmin

X
′ = clip0,1

(
Poisson(Xnorm.cs)

cs

)
Xshot = X

′.(xmax − xmin) + xmin

(9)

In Equation 9, xmin ,xmax denote the minimum and maximum
values in the training data; and clip0,1 is a function that projects
the input to the range [0,1].

Model efficiencymetrics To evaluate the efficiency of eachmodel
configuration, we use the following measures:

• Parameter Reduction: Memory consumed (in KB) for storing
the weights of a model.
• Floating point operations (FLOPS): Number of multiply and
add operations performed by the model in one forward pass.
Measurement units are Mega (106).
• Inference Time: Average time taken (in seconds) to score one
night of EEG data. We assume a night consists of 9 hours and
amounts to 1,080 EEG recordings (each of 30 seconds). This is
measured on a Pixel 2 smartphone.
• Energy Consumption: Average energy consumed by a model
(in Joules) to score one night of EEG data on a Pixel 2 smartphone.
Tomeasure consumed energy, we implement an infinite inference
loop over EEG recordings until the battery level drops from
100% down to 85%. For each unit percent drop (i.e., 15 levels),
we log the number of iterations Ni performed by the model.
Given that a standard Pixel 2 battery can deliver 2700 mAh at
3.85 Volts, we use the following conversion to estimate energy
consumed E (in Joules) for a unit percent drop in battery level
E = 2700

1000 × 3600 × 3.85. The total energy for inferencing over an
entire night of EEG recordings is then calculated as E

Ni
× 1080

where Ni is the number of inferences made in the unit battery
drop interval. We average this for every unit battery percentage

https://www.tensorflow.org/lite

REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20–24, 2020, Taipei, Taiwan

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

Sleep-EDF
Averaged

SHHS
Averaged

Train Epsilon

Select ε with highest
average macro-F1

Figure 3: Line search results for ϵ on Sleep-EDF and SHHS

datasets. We select ϵ=10, since it provides the best average

macro-F1 score on both datasets.

drop from 100% to 85% (i.e., 15 intervals) to calculate the average
energy consumption

4.4 Hyperparameter Selection

Optimal hyper-parameter selection is crucial for obtaining good
performance with both baseline and Rest models. We systemati-
cally conduct a series of line and grid searches to determine ideal
values of ϵ , cд , λo and λд using the validation sets.

Selecting ϵ This parameter controls the perturbation strength
of adversarial training in Equation 2. Correctly setting this param-
eter is critical since a small ϵ value will have no effect on noise
robustness, while too high a value will lead to poor benign accuracy.
We follow standard procedure and determine the optimal ϵ on a
per-dataset basis [27], conducting a line search across ϵ ∈ [0,30]
in steps of 2. For each value of ϵ we measure benign and adver-
sarial validation macro-F1 score, where adversarial macro-F1 is an
average of three strength levels: low (ϵ=2), medium (ϵ=6) and high
(ϵ=12). We then select the ϵ with highest macro-F1 score averaged
across the benign and adversarial macro-F1. Line search results are
shown in Figure 3; we select ϵ = 10 for both dataset since it’s the
value with highest average macro-F1.

Selecting cд This parameter controls the noise perturbation strength
of Gaussian training in Equation 8. Similar to ϵ , we determine cд
on a per-dataset basis, conducting a line search across cд values: 0.1
(low), 0.2 (medium) and 0.3 (high). Based on results from Table 2,
we select cд=0.2 for both datasets since it provides the best average
macro-F1 score while minimizing the drop in benign accuracy.

Selecting λo and λд These parameters determine the strength of
spectral and sparsity regularization in Equation 7.We determine the
best value for λo and λд through a grid search across the following
parameter values λo = [0.001, 0.003, 0.005] and λд = [1E − 04, 1E −
05]. Based on results from Table 3, we select λo = 0.003 and λд =
1E − 05. Since these are model dependent parameters, we calculate
them once on the Sleep-EDF dataset and re-use them for SHHS.

Guassian F1

cд Benign F1 Low Med High Average F1

E
D
F

0.1 0.75 0.76 0.7 0.5 0.68
0.2 0.7 0.72 0.75 0.64 0.70

0.3 0.67 0.68 0.71 0.75 0.7025

S
H
H
S 0.1 0.69 0.74 0.45 0.21 0.52

0.2 0.68 0.69 0.68 0.43 0.62

0.3 0.55 0.57 0.65 0.74 0.63
Table 2: Line search results for identifying optimal cд on

Sleep-EDF and SHHS datasets. Macro-F1 is abbreviated F1 in

table; average macro-F1 is the mean of all macro-F1 scores.

We select cд=0.2 for both datasets as it represents a good

trade-off between benign and Gaussian macro-F1.

Adversarial F1

λo λд Benign F1 Low Med High Avg. F1

0.001 1E-04 0.73 0.66 0.65 0.61 0.66
0.003 1E-04 0.72 0.64 0.63 0.59 0.65
0.005 1E-04 0.72 0.65 0.64 0.62 0.66
0.001 1E-05 0.73 0.66 0.65 0.62 0.67
0.003 1E-05 0.73 0.67 0.66 0.62 0.67

0.005 1E-05 0.73 0.64 0.64 0.62 0.66
Table 3: Grid search results for λo and λд on Sleep-EDF

dataset. Macro-F1 is abbreviated as F1 in table; average

macro-F1 is the mean of all macro-F1 scores. We select λo
and λд with highest average macro-F1 score.

4.5 Noise Robustness

To evaluate noise robustness, we ask the following questions—(1)
what is the impact of Rest on model accuracy with and without
noise in the data? and (2) how does Rest training compare to
baseline methods of benign training, Gaussian training and noise
filtering? In answering these questions, we analyze noise robustness
of models at three scales: (i) meta-level macro-F1 scores; (ii) meso-
level confusion matrix heatmaps; and (iii) granular-level single-
patient hypnograms.

I. Meta analysis: Macro-F1 Scores In Table 4, we present a high-
level overview of model performance through macro-F1 scores on
three types and strength levels of noise corruption. The Macro-
F1 scores and standard deviation are reported by averaging over
three runs for each model and noise level. We identify multiple key
insights as described below:

(1) Rest Outperforms Across All Types of Noise As demon-
strated by the higher macro-F1 scores, Rest outperforms all
baseline methods in the presence of noise. In addition, Rest has
a low standard deviation, indicating model performance is not
dependent on weight initialization.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Duggal & Freitas, et al.

Adversarial Gaussian Shot

Data Method Compress No noise Low Med High Low Med High Low Med High

S
l
e
e
p
-
E
D
F

Sors [32] ✗ 0.67 ± 0.02 0.57 ± 0.02 0.51 ± 0.04 0.19 ± 0.06 0.66 ± 0.03 0.60 ± 0.03 0.39 ± 0.08 0.58 ± 0.04 0.42 ± 0.08 0.11 ± 0.03

Liu [26] ✓ 0.69 ± 0.02 0.52 ± 0.07 0.41 ± 0.07 0.09 ± 0.02 0.67 ± 0.02 0.53 ± 0.02 0.28 ± 0.04 0.52 ± 0.03 0.31 ± 0.04 0.06 ± 0.01

Blanco [7] ✓ 0.68 ± 0.01 0.51 ± 0.06 0.40 ± 0.06 0.09 ± 0.02 0.65 ± 0.02 0.54 ± 0.04 0.31 ± 0.10 0.53 ± 0.04 0.34 ± 0.09 0.08 ± 0.02

Ford [15] ✓ 0.64 ± 0.01 0.59 ± 0.01 0.60 ± 0.02 0.31 ± 0.08 0.65 ± 0.01 0.67 ± 0.02 0.57 ± 0.03 0.67 ± 0.02 0.60 ± 0.02 0.10 ± 0.01

Rest (A) ✓ 0.66 ± 0.02 0.64 ± 0.02 0.64 ± 0.02 0.61 ± 0.02 0.66 ± 0.02 0.67 ± 0.01 0.66 ± 0.01 0.67 ± 0.01 0.66 ± 0.01 0.42 ± 0.06

Rest (A+S) ✓ 0.69 ± 0.01 0.67 ± 0.02 0.66 ± 0.01 0.61 ± 0.03 0.69 ± 0.01 0.68 ± 0.01 0.67 ± 0.02 0.68 ± 0.01 0.67 ± 0.02 0.42 ± 0.08

S
H
H
S

Sors [32] ✗ 0.78 ± 0.01 0.62 ± 0.03 0.46 ± 0.03 0.33 ± 0.00 0.64 ± 0.03 0.43 ± 0.02 0.35 ± 0.04 0.69 ± 0.02 0.59 ± 0.03 0.45 ± 0.01

Liu [26] ✓ 0.77 ± 0.01 0.61 ± 0.02 0.49 ± 0.04 0.34 ± 0.03 0.66 ± 0.05 0.45 ± 0.05 0.34 ± 0.04 0.70 ± 0.04 0.62 ± 0.04 0.47 ± 0.05

Blanco [7] ✓ 0.77 ± 0.01 0.60 ± 0.03 0.47 ± 0.04 0.33 ± 0.02 0.64 ± 0.07 0.43 ± 0.05 0.34 ± 0.04 0.67 ± 0.06 0.59 ± 0.05 0.46 ± 0.04

Ford [15] ✓ 0.62 ± 0.02 0.59 ± 0.01 0.62 ± 0.00 0.59 ± 0.05 0.66 ± 0.00 0.75 ± 0.04 0.47 ± 0.10 0.65 ± 0.00 0.68 ± 0.01 0.74 ± 0.04

Rest (A) ✓ 0.70 ± 0.01 0.68 ± 0.00 0.70 ± 0.01 0.67 ± 0.01 0.72 ± 0.01 0.76 ± 0.01 0.58 ± 0.03 0.72 ± 0.01 0.74 ± 0.01 0.76 ± 0.01

Rest (A+S) ✓ 0.72 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.69 ± 0.02 0.74 ± 0.01 0.77 ± 0.01 0.62 ± 0.03 0.73 ± 0.01 0.75 ± 0.01 0.78 ± 0.00

Table 4: Meta Analysis: Comparison of macro-F1 scores achieved by each model. The models are evaluated on Sleep-EDF and

SHHS datasets with three types and strengths of noise corruption. We bold the compressed model with the best performance

(averaged over 3 runs) and report the standard deviation of each model next to the macro-F1 score. Rest performs better in

all noise test measurements.

(2) Spectral Regularization Improves Performance Rest (A+
S) consistently improves upon Rest (A), indicating the useful-
ness of spectral regularization towards enhancing noise robust-
ness by constraining the Lipschitz constant.

(3) SHHS Performance Better Than Sleep-EDF Performance is
generally better on the SHHS dataset compared to Sleep-EDF.
One possible explanation is due to the SHHS dataset being less
noisy in comparison to the Sleep-EDF dataset. This stems from
the fact that the SHHS study was performed in the hospital
setting while Sleep-EDF was undertaken in the home setting.

(4) Benign & Adversarial Accuracy Trade-off Contrary to the
traditional trade-off between benign and adversarial accuracy,
Rest performance matches Liu in the no noise setting on sleep-
EDF. This is likely attributable to the noise in the Sleep-EDF
dataset, which was collected in the home setting. On the SHHS
dataset, the Liu model outperforms Rest in the no noise setting,
where data is captured in the less noise prone hospital setting.
Due to this, Rest models are best positioned for use in noisy
environments (e.g., at home); while traditional models are more
effective in controlled environments (e.g., sleep labs).

II.MesoAnalysis: Per-class PerformanceWevisualize and iden-
tify class-wise trends using confusionmatrix heatmaps (Fig. 4). Each
confusion matrix describes a model’s performance for a given level
of noise (or no noise). A model that is performing well should have a
dark diagonal and light off-diagonal. We normalize the rows of each
confusion matrix to accurately represent class predictions in an
imbalanced dataset. When a matrix diagonal has a value of 1 (dark
blue, or dark green) the model predicts every example correctly;
the opposite occurs at 0 (white). Analyzing Figure 4, we identify
the following key insights:

(1) Rest Performs Well Across All Classes Rest accurately
predicts each sleep stage (W, N1, N2, N3, REM) across multiple
types of noise (Fig. 4, bottom 3 rows), as evidenced by the dark
diagonal. In comparison, each baseline method has considerable
performance degradation (light diagonal) in the presence of
noise. This is particularly evident on the Sleep-EDF dataset (left
half) where data is collected in the noisier home environment.

(2) N1 Class Difficult to PredictWhen no noise is present (Fig. 4,
top row), each method performs well as evidenced by the dark
diagonal, except on the N1 sleep stage class. This performance
drop is likely due to the limited number of N1 examples in the
datasets (see Table 1).

(3) IncreasedMisclassification Towards “Wake” Class On the
Sleep-EDF dataset, shot and adversarial noise cause the baseline
models to mispredict classes as Wake. One possible explanation
is that the models misinterpret the additive noise as evidence for
the wake class which has characteristically large fluctuations.

III. Granular Analysis: Single-patient Hypnograms We want
tomore deeply understand how ourRestmodels counteract noise at
the hypnogram level. Therefore, we select a test set patient from the
SHHS dataset, and generate and visualize the patient’s overnight
hypnograms using the Sors and Rest models on three levels of
Gaussian noise corruption (Figure 5). Each of these hypnograms
is compared to a trained technicians hypnogram (expert scored in
Fig. 5), representing the ground-truth. We inspect a few more test
set patients using the above approach, and identify multiple key
representative insights:

(1) Noisy Environments Require RobustModelsAs data noise
increases, Sors performance degrades. This begins at the low
noise level, further accelerates in the medium level and reaches

REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20–24, 2020, Taipei, Taiwan

Shot

No Noise

Adversarial

Gaussian

R���(A+S) R���(A+S)Blanco FordLiuSors Blanco FordLiuSors

SHHSSleep-EDF

N1

N1

N2

N2

N3

N3
W
W

R

R 1 1

0 0
Our approach is more accurate in the

presence of noise (i.e., darker diagonals)

(high)

(high)

(high)

Figure 4: Meso Analysis: Class-wise comparison of model predictions. The models are evaluated over the SHHS test set per-

turbed with different noise types. In each confusionmatrix, rows are ground-truth classes while columns are predicted classes.

The intensity of a cell is obtained by normalizing the score with respect to the class membership. When a cell has a value of

1 (dark blue, or dark green) the model predicts every example correctly, the opposite occurs at 0 (white). A model that is

performing well would have a dark diagonal and light off-diagonal. Rest has the darkest cells along the diagonal on both

datasets.

Expert
Scored

No Noise

Low Noise
(Gaussian)

(Gaussian)
Med Noise

(Gaussian)
High Noise

Rest(A+S) ModelState-of-the-Art Model

W
N1
N2
N3

REM

0 200 400 600 800 1000

Our approach is accurate across
all levels of environmental noise

Performance degrades with
increasing environmental noise

Time

Figure 5: Granular Analysis: Comparison of the overnight hypnograms obtained for a patient in the SHHS test set. The hypno-

grams are generated using the Sors (left) and Rest (right) models in the presence of increasing strengths of Gaussian noise.

When no noise is present (top row), bothmodels performwell, closelymatching the ground truth (bottom row). However, with

increasing noise, Sors performance rapidly degrades, while Rest continues to generate accurate hypnograms.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Duggal & Freitas, et al.

Inference Time

Energy Usage

909

Sors

SHHS

Sleep-
EDF

Sleep-
EDF

SHHS

R��� >9x faster

>6x

17x more efficient

>9x

302

355

31

57

53

1143

(in seconds; shorter is better)

(in joules; shorter is better)

123

Figure 6: Time and energy consumption for scoring a sin-

gle night of EEG recordings.Rest(A+S) is significantly faster

and more energy efficient than the state-of-the-art Sors

model. Evaluations were done on a Pixel 2 smartphone.

nearly zero at the high level. In contrast, Rest effectively han-
dles all levels of noise, generating an accurate hypnogram at
even the highest level.

(2) Low Noise Environments Give Good Performance In the
no noise setting (top row) both the Sors and Rest models gen-
erate accurate hypnograms, closely matching the contours of
expert scoring (bottom).

4.6 Model Efficiency

We measure model efficiency along two dimensions—(1) static met-
rics: amount of memory required to store weights in memory and
FLOPS; and (2) dynamic metrics: inference time and energy con-
sumption. For dynamic measurements that depend on device hard-
ware, we deploy each model to a Pixel 2 smartphone.

Analyzing Static Metrics: Memory & Flops Table 5 describes
the size (in KB) and computational requirements (in MFlops) of
each model. We identify the following key insights:

(1) RestModels Require Fewest FLOPSOn both datasets, Rest
requires the least number of FLOPS.

(2) RestModels are Small Restmodels are also smaller (or com-
parable) to baseline compressed models while achieving signifi-
cantly better noise robustness.

(3) Model Efficiency and Noise Robustness Combining the in-
sights from Section 4.5 and the above, we observe that Rest
models have significantly better noise robustness while main-
taining a competitive memory footprint. This suggests that ro-
bustness is more dependent on the the training process, rather
than model capacity.

Analyzing DynamicMetrics: Inference Time& Energy In Fig-
ure 6, we benchmark the inference time and energy consumption
of a Sors and Rest model deployed on a Pixel 2 smartphone using
Tensorflow Lite. We identify the following insights:

Data Model Size (KB) MFlops

S
l
e
e
p
-
E
D
F

Sors [32] 8,896 1451
Liu [26] 440 127
Blanco [7] 440 127
Ford [15] 448 144
Rest (A) 464 98
Rest (A+S) 449 94

S
H
H
S

Sors [32] 8,996 1815
Liu [26] 464 211
Blanco [7] 464 211
Ford [15] 478 170
Rest (A) 476 160
Rest (A+S) 496 142

Table 5: Comparison on model size and the FLOPS required

to score a single night of EEG recordings. Rest models

are significantly smaller and comparable in size/compute to

baselines.

(1) Rest Models Run Faster When deployed, Rest runs 9× and
6× faster than the uncompressed model on the two datasets.

(2) Rest Models are Energy Efficient Rest models also con-
sume 17× and 9× less energy than an uncompressed model on
the Sleep-EDF and SHHS datasets, respectively.

(3) Enabling Sleep Staging for Edge Computing The above
benefits demonstrate that model compression effectively trans-
lates into faster inference and a reduction in energy consump-
tion. These benefits are crucial for deploying on the edge.

5 CONCLUSION

We identified two key challenges in developing deep neural net-
works for sleep monitoring in the home environment—robustness to
noise and efficiency. We proposed to solve these challenges through
Rest—a new method that simultaneously tackles both issues. For
the sleep staging task over electroencephalogram (EEG), Rest
trains models that achieve up to 19× parameter reduction and
15×MFLOPS reduction with an increase of up to 0.36 in macro-F-
1 score in the presence of noise. By deploying these models to a
smartphone, we demonstrate that Rest achieves up to 17× energy
reduction and 9× faster inference.

6 ACKNOWLEDGMENTS

This work was in part supported by the NSF award IIS-1418511,
CCF-1533768, IIS-1838042, CNS-1704701, IIS-1563816; GRFP (DGE-
1650044); and the National Institute of Health award NIH R01
1R01NS107291-01 and R56HL138415.

REFERENCES

[1] Bruce M Altevogt, Harvey R Colten, et al. 2006. Sleep disorders and sleep depriva-
tion: an unmet public health problem. National Academies Press.

[2] F. Andreotti, H. Phan, N. Cooray, C. Lo, M. T. M. Hu, and M. De Vos. 2018.
Multichannel Sleep Stage Classification and Transfer Learning using Convolu-
tional Neural Networks. In 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC). 171–174. https:
//doi.org/10.1109/EMBC.2018.8512214

https://doi.org/10.1109/EMBC.2018.8512214
https://doi.org/10.1109/EMBC.2018.8512214

REST: Robust and Efficient Neural Networks
for Sleep Monitoring in the Wild WWW ’20, April 20–24, 2020, Taipei, Taiwan

[3] Z Beattie, A Pantelopoulos, A Ghoreyshi, Y Oyang, A Statan, and C Heneghan.
2017. 0068 ESTIMATION OF SLEEP STAGES USING CARDIAC AND AC-
CELEROMETER DATA FROM A WRIST-WORN DEVICE. Sleep 40, suppl_1
(April 2017), A26–A26.

[4] Richard B Berry, Rita Brooks, Charlene E Gamaldo, Susan M Harding, Carole L
Marcus, Bradley V Vaughn, et al. 2012. The AASMmanual for the scoring of sleep
and associated events. Rules, Terminology and Technical Specifications, Darien,
Illinois, American Academy of Sleep Medicine 176 (2012).

[5] Vikrant Bhateja, Shabana Urooj, Rishendra Verma, and Rini Mehrotra. 2013. A
novel approach for suppression of powerline interference and impulse noise in
ECG signals. In IMPACT-2013. IEEE, 103–107.

[6] Siddharth Biswal, Joshua Kulas, Haoqi Sun, Balaji Goparaju,M. BrandonWestover,
Matt T. Bianchi, and Jimeng Sun. 2017. SLEEPNET: Automated Sleep Staging
System via Deep Learning. CoRR abs/1707.08262 (2017). arXiv:1707.08262 http:
//arxiv.org/abs/1707.08262

[7] S Blanco, S Kochen, OA Rosso, and P Salgado. 1997. Applying time-frequency
analysis to seizure EEG activity. IEEE Engineering in medicine and biology maga-
zine 16, 1 (1997), 64–71.

[8] Manuel Blanco-Velasco, Binwei Weng, and Kenneth E Barner. 2008. ECG signal
denoising and baseline wander correction based on the empirical mode decom-
position. Computers in biology and medicine 38, 1 (2008), 1–13.

[9] Stanislas Chambon, Mathieu N Galtier, Pierrick J Arnal, Gilles Wainrib, and
Alexandre Gramfort. 2018. A deep learning architecture for temporal sleep stage
classification using multivariate and multimodal time series. IEEE Transactions
on Neural Systems and Rehabilitation Engineering 26, 4 (2018), 758–769.

[10] Kang-Ming Chang and Shing-Hong Liu. 2011. Gaussian noise filtering from ECG
by Wiener filter and ensemble empirical mode decomposition. Journal of Signal
Processing Systems 64, 2 (2011), 249–264.

[11] Yongjian Chen, Masatake Akutagawa, Takahiro Emoto, and Yohsuke Kinouchi.
2010. The removal of EMG in EEG by neural networks. Physiological measurement
31, 12 (2010), 1567.

[12] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas
Usunier. 2017. Parseval networks: Improving robustness to adversarial examples.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 854–863.

[13] Rahul Duggal, Cao Xiao, Richard Vuduc, and Jimeng Sun. 2019. CUP: Cluster
Pruning for Compressing Deep Neural Networks. arXiv:arXiv:1911.08630

[14] Farzan Farnia, Jesse M Zhang, and David Tse. 2018. Generalizable Adversarial
Training via Spectral Normalization. arXiv preprint arXiv:1811.07457 (2018).

[15] Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. 2019. Adversarial
Examples Are a Natural Consequence of Test Error in Noise. CoRR abs/1901.10513
(2019). arXiv:1901.10513 http://arxiv.org/abs/1901.10513

[16] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. Circulation 101, 23
(2000), e215–e220.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[18] Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. 2018. Sparse
dnns with improved adversarial robustness. In Advances in neural information
processing systems. 242–251.

[19] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in neural information
processing systems. 1135–1143.

[20] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural net-
work robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261 (2019).

[21] André Henriksen, Martin Haugen Mikalsen, Ashenafi Zebene Woldaregay,
Miroslav Muzny, Gunnar Hartvigsen, Laila Arnesdatter Hopstock, and Sameline
Grimsgaard. 2018. Using fitness trackers and smartwatches to measure physical
activity in research: analysis of consumer wrist-worn wearables. Journal of
medical Internet research 20, 3 (2018), e110.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[23] Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise
brain damage. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2554–2564.

[24] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2016.
Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016).

[25] Ji Lin, Chuang Gan, and Song Han. 2019. Defensive quantization: When efficiency
meets robustness. arXiv preprint arXiv:1904.08444 (2019).

[26] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE International Conference on Computer Vision.
2736–2744.

[27] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083 (2017).
[28] American Academy of Sleep Medicine et al. 2016. Economic Burden of Undi-

agnosed Sleep Apnea in US is Nearly $150 Billion per Year. Published on the
American Academy of Sleep Medicine’s official website, on August 8 (2016).

[29] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos. 2019. Joint Classi-
fication and Prediction CNN Framework for Automatic Sleep Stage Classifica-
tion. IEEE Transactions on Biomedical Engineering 66, 5 (May 2019), 1285–1296.
https://doi.org/10.1109/TBME.2018.2872652

[30] Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto,
George T O’Connor, David M Rapoport, Susan Redline, John Robbins, JonathanM
Samet, et al. 1997. The sleep heart health study: design, rationale, and methods.
Sleep 20, 12 (1997), 1077–1085.

[31] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision. Springer, 525–542.

[32] Arnaud Sors, Stéphane Bonnet, Sébastien Mirek, Laurent Vercueil, and Jean-
François Payen. 2018. A convolutional neural network for sleep stage scoring
from raw single-channel EEG. Biomedical Signal Processing and Control 42 (2018),
107 – 114. https://doi.org/10.1016/j.bspc.2017.12.001

[33] Annette Sterr, James K Ebajemito, Kaare B Mikkelsen, Maria A Bonmati-Carrion,
Nayantara Santhi, Ciro DellaMonica, Lucinda Grainger, Giuseppe Atzori, Victoria
Revell, Stefan Debener, et al. 2018. Sleep EEG derived from behind-the-ear
electrodes (cEEGrid) compared to standard polysomnography: A proof of concept
study. Frontiers in human neuroscience 12 (2018), 452.

[34] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. 2017. DeepSleepNet: A
model for automatic sleep stage scoring based on raw single-channel EEG. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 25, 11 (2017), 1998–
2008.

[35] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. 2018. Robustness may be at odds with accuracy. stat 1050
(2018), 11.

[36] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. In Advances in neural information
processing systems. 2074–2082.

[37] Jian Xue, Jinyu Li, and Yifan Gong. 2013. Restructuring of deep neural network
acoustic models with singular value decomposition.. In Interspeech. 2365–2369.

[38] Yuichi Yoshida and Takeru Miyato. 2017. Spectral norm regularization for im-
proving the generalizability of deep learning. arXiv preprint arXiv:1705.10941
(2017).

[39] Mingmin Zhao, Shichao Yue, Dina Katabi, Tommi S Jaakkola, and Matt T Bianchi.
2017. Learning Sleep Stages from Radio Signals: A Conditional Adversarial
Architecture. 70 (2017), 4100–4109.

[40] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao
Wu, Junzhou Huang, and Jinhui Zhu. 2018. Discrimination-aware channel prun-
ing for deep neural networks. In Advances in Neural Information Processing
Systems. 875–886.

http://arxiv.org/abs/1707.08262
http://arxiv.org/abs/1707.08262
http://arxiv.org/abs/1707.08262
http://arxiv.org/abs/arXiv:1911.08630
http://arxiv.org/abs/1901.10513
http://arxiv.org/abs/1901.10513
https://doi.org/10.1109/TBME.2018.2872652
https://doi.org/10.1016/j.bspc.2017.12.001

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Sleep-Stage Prediction
	2.2 Noise & Adversarial Robustness
	2.3 Model Compression

	3 Rest: Noise-Robust & Efficient Models
	3.1 Overview
	3.2 Adversarial Training
	3.3 Spectral Regularizer
	3.4 Sparsity Regularizer & Rest Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Model Architecture and Configurations
	4.3 Evaluation Metrics
	4.4 Hyperparameter Selection
	4.5 Noise Robustness
	4.6 Model Efficiency

	5 Conclusion
	6 Acknowledgments
	References

