
DEVELOPING ROBUST MODELS, ALGORITHMS, DATABASES AND TOOLS
WITH APPLICATIONS TO CYBERSECURITY AND HEALTHCARE

A Dissertation
Presented to

The Academic Faculty

By

Scott Freitas

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Machine Learning

School of Computational Science and Engineering
Georgia Institute of Technology

December 2021

Copyright © Scott Freitas 2021

DEVELOPING ROBUST MODELS, ALGORITHMS, DATABASES AND TOOLS
WITH APPLICATIONS TO CYBERSECURITY AND HEALTHCARE

Approved by:

Duen Horng Chau, Advisor
School of Computational Science &
Engineering
Georgia Institute of Technology

Srijan Kumar
School of Computational Science &
Engineering
Georgia Institute of Technology

Diyi Yang
School of Computational Science &
Engineering
Georgia Institute of Technology

Hanghang Tong
Department of Computer Science
University of Illinois at Urbana-
Champaign

B. Aditya Prakash
School of Computational Science &
Engineering
Georgia Institute of Technology

Date Approved: December 7, 2021

To my parents Gary Freitas and Jennifer Morse, to whom I owe everything.

ACKNOWLEDGEMENTS

First and foremost I want to thank my adviser, Duen Horng (Polo) Chau, for his un-
wavering support and guidance throughout the journey of my PhD. I would not be where
I am today if not for your enormous passion, energy and time you have spent to train me
to become a researcher. I can never repay you for your endless mentorship and friendship,
which has taken many forms over the years—from our weekly meetings, late night paper
editing and presentation making, to our endless discussion of ideas and life. Your tireless
efforts have forever changed how I see the world.

To my early research mentor and adviser Hanghang Tong, without whom I never would
have entered the world of research and graphs. You took a chance on me when I was an
undergraduate with no research experience, and through your constant support and men-
torship enabled me to become the researcher and person I am today. Without your immea-
surable efforts, I never would have been able to achieve early wins, which would forever
shape my career and life.

To the countless people who have helped me along this journey—my committee mem-
bers, Srijan Kumar, Diyi Yang, and B. Aditya Prakash for their invaluable feedback and
advice; my close collaborators at IBM Research, Amazon and Microsoft: Jiyong Jang,
Frederico Araujo, Teryl Taylor, Hao Zheng, Yanni Lai, Xiaohui Shen, Joshua Neil, Andrew
Wicker, Karishma Sanghvi, and Yuxiao Dong for their amazing support and mentorship;
my undergraduate research mentors Ross Maciejewski and Yezhou Yang for their invalu-
able advice and support; my dear friend Rahul Duggal—I could not have made it through
this program without you. Your support, and our conversations about life and research en-
abled me to keep going even when I thought I could not. To all my friends and colleagues
in the PoloClub of Data Science: Fred Hohman, Haekyu Park, Nilaksh Das, Jay Wang and
Austin Wright I am lucky to have had your friendship and advice. Also to Kevin Allix and
AndroZoo colleagues for generously allowing us to use their data in our research.

Lastly, I want to thank you parents Gary Freitas and Jennifer Morse for their uncon-
ditional support throughout this long and arduous journey—you are the reason I am here
today.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures . xii

Chapter 1: Introduction . 1
1.1 Thesis Overview . 1

1.1.1 Part I: Robust Tools . 1
1.1.2 Part II: Algorithms . 4
1.1.3 Part III: Databases . 6
1.1.4 Part IV: Robust Models . 7

1.2 Thesis Statement . 10
1.3 Research Contributions . 10
1.4 Impact . 11

I Robust Tools 13

Chapter 2: Graph Vulnerability and Robustness: A Survey 15
2.1 Introduction . 15

2.1.1 Contributions . 16
2.1.2 Survey Methodology & Summarization Process 18
2.1.3 Related Surveys . 18
2.1.4 Survey Organization. 20

2.2 Robustness Measures . 20
2.2.1 Measures Based on Graph Connectivity 22
2.2.2 Measures Based on Adjacency Matrix Spectrum 28
2.2.3 Measures Based on Laplacian Matrix Spectrum 32
2.2.4 Comparing Robustness Measures 34
2.2.5 Selecting a Robustness Measure 35

2.3 Failures and Targeted Attacks . 37
2.3.1 Graph Models . 37
2.3.2 Isolated & Cascading Failures . 39
2.3.3 Targeted Attacks . 39
2.3.4 Comparison to Other Targeted Attacks 42

iv

2.4 Network Defense . 42
2.4.1 Measure Independent Heuristics 43
2.4.2 Optimization Based Techniques 44
2.4.3 Selecting a Defense Method . 45

2.5 Research Directions & Open Problems . 46
2.5.1 Guidelines for Selecting & Developing Measures 46
2.5.2 Furthering Interpretability . 47
2.5.3 Studying Robustness in New Domains 47
2.5.4 Bridging Graph Robustness & Adversarial ML 48

2.6 Conclusion . 48

Chapter 3: Evaluating Graph Vulnerability and Robustness using TIGER . . . 50
3.1 Introduction . 50

3.1.1 Contributions . 52
3.2 TIGER Robustness Measures . 53

3.2.1 Example Measures . 54
3.2.2 Measure Implementation & Evaluation 55
3.2.3 Running Robustness Measures in TIGER 56

3.3 TIGER Attacks . 57
3.3.1 Attack Strategies . 57
3.3.2 Comparing Strategies . 58
3.3.3 Running Network Attacks in TIGER 58

3.4 TIGER Defenses . 59
3.4.1 Defense Strategies . 59
3.4.2 Comparing Strategies . 60
3.4.3 Running Network Defenses in TIGER 60

3.5 TIGER Simulation Tools . 62
3.5.1 Cascading Failures . 62
3.5.2 Running Cascading Failures in TIGER 64
3.5.3 Dissemination of Network Entities 65
3.5.4 Running Entity Dissemination in TIGER 65

3.6 Conclusion . 67

II Robust Algorithms 68

Chapter 4: D2M: Dynamic Defense and Modeling of Adversarial Movement in
Networks . 70

4.1 Introduction . 70
4.2 Background and Our Differences . 72

4.2.1 Detecting Lateral Attacks . 73
4.2.2 Graph Mining & Network Security 73

4.3 Authentication Graph . 74
4.3.1 Building Graph Structure . 74
4.3.2 Integrating Domain Knowledge 74

v

4.4 Formulating the Research Problems . 76
4.5 D2M: Lateral Attack Modeling . 76

4.5.1 Lateral Attack Overview . 76
4.5.2 Lateral Attack Strategies . 78
4.5.3 Lateral Attack Algorithm . 79
4.5.4 Analysis of Lateral Attack Algorithm 80

4.6 D2M: Lateral Attack Vulnerability . 80
4.7 D2M: Lateral Attack Defense . 82

4.7.1 Defense Strategies . 82
4.7.2 Analysis of Defense Strategies . 84

4.8 Experiments . 84
4.8.1 Experimental Setup . 84
4.8.2 Network Vulnerability Analysis 85
4.8.3 Defense Strategy Analysis . 85

4.9 Conclusion . 86

III Robust Databases 88

Chapter 5: A Large-Scale Database for Graph Representation Learning 90
5.1 Introduction . 90
5.2 Properties of MalNet . 92

5.2.1 Graph Representation Learning Databases: Advancing the State-
of-the-Art . 94

5.3 Constructing MalNet . 96
5.3.1 Collecting Candidate Graphs . 96
5.3.2 Processing the Graphs . 97
5.3.3 MalNet-Tiny . 97
5.3.4 Online Exploration of the Data . 98

5.4 MalNet for New Research & Discoveries 98
5.4.1 Graph Representation Techniques 98
5.4.2 Enabling New Discoveries . 100
5.4.3 Enabling New Research Directions 101

5.5 Conclusion . 103

Chapter 6: A Large-Scale Image Database of Malicious Software 105
6.1 Introduction . 105
6.2 Properties of MalNet-Image . 107
6.3 MalNet-Image: Advancing the State-of-the-Art 108

6.3.1 Constructing MalNet-Image . 110
6.3.2 Interactive Visual Explorer for MALNET-IMAGE 112

6.4 MalNet-Image Applications . 113
6.4.1 Application 1: Benchmarking Techniques 113
6.4.2 Application 2: Malware Detection 116
6.4.3 Application 3: Malware Classification 117

vi

6.4.4 Enabling New Research Directions 118
6.5 Conclusion . 119

IV Robust Models 121

Chapter 7: UnMask: Adversarial Detection and Defense Through Robust Fea-
ture Alignment . 123

7.1 Introduction . 123
7.1.1 Contributions . 124

7.2 Background and Related Work . 126
7.2.1 Adversarial Attacks . 126
7.2.2 Adversarial Defense & Detection 127

7.3 UNMASK: Detection and Defense Framework 128
7.3.1 Aligning Robust Features with Human Intuition 128
7.3.2 Robust Features For Detection and Defense 130

7.4 Evaluation . 132
7.4.1 Experiment Setup . 132
7.4.2 Evaluating UnMask Defense and Detection 135

7.5 Conclusion . 138

Chapter 8: REST: Robust and Efficient Neural Networks for Sleep Monitoring
in the Wild . 142

8.1 Introduction . 142
8.1.1 Contributions . 144

8.2 Related Work . 145
8.2.1 Sleep-Stage Prediction . 145
8.2.2 Noise & Adversarial Robustness 146
8.2.3 Model Compression . 146

8.3 REST: Noise-Robust & Efficient Models 147
8.3.1 Overview . 147
8.3.2 Adversarial Training . 147
8.3.3 Spectral Regularizer . 148
8.3.4 Sparsity Regularizer & REST Loss Function 150

8.4 Experiments . 151
8.4.1 Datasets . 151
8.4.2 Model Architecture and Configurations 153
8.4.3 Evaluation Metrics . 154
8.4.4 Hyperparameter Selection . 155
8.4.5 Noise Robustness . 157
8.4.6 Model Efficiency . 161

8.5 Conclusion . 162

vii

V Conclusions 163

Chapter 9: Conclusion and Future Directions . 164
9.1 Research Contributions . 164
9.2 Impact . 165
9.3 Future Directions . 166

9.3.1 Advancing Vision Based Cybersecurity Research 166
9.3.2 Advancing Graph Representation Learning Research 167
9.3.3 Robust Tools and Algorithms . 168

References . 200

viii

LIST OF TABLES

1.1 The publications mapped to the thesis outline. 2

2.1 Relevant venues in order of journals, conferences, workshops, and preprints.
Within each category, we order the venues based on the most recently avail-
able impact factors reported officially (e.g., venues’ websites). 19

2.2 Summary of works studied in this survey, each row is one work. Columns
are grouped into one of three categories—robustness measures, attacks and
defenses—corresponding to primary chapter sections (except “where”). In
addition, we divide the robustness measure columns into three categories
based on whether it uses the graph, adjacency matrix, or Laplacian matrix,
from left to right, respectively (using dashed lines) 22

2.3 Symbols and Definition Tables. We divide symbols and definitions based
on whether it corresponds to use with the graph, adjacency matrix or Lapla-
cian matrix. From left to right, symbol and definition tables for the graph,
adjacency matrix and Laplacian matrix. 23

2.4 Comparison of robustness measures. Measures are grouped based on whether
they use the graph, adjacency or Laplacian matrix. For each measure, we
briefly describe it’s application to measuring network robustness. 35

4.1 Symbols and Definition . 73

4.2 Graph Statistics. ρ: graph density, C: average clustering coefficient, δavg:
mean node out-degree. 85

4.3 Vulnerability Statistics. Statistics excluded for Glanl strategies RE and DE
in h3 as computation exceeded budget (Sect. 4.8.1). 86

5.1 Descriptive statistics for 10 largest graph types. See Table 5.4 for all graph
statistics. 92

ix

5.2 Comparison of MALNET-GRAPH properties with common graph classifi-
cation datasets. MALNET-GRAPH offers over 1.2 million graphs averag-
ing 15k nodes and 35k edges with a hierarchical class structure containing
47 types and 696 families. This makes MALNET-GRAPH the largest pub-
lic graph database constructed to date, offering 105× more graphs, 39×
larger graphs on average, and 63× more classes compared to the popular
REDDIT-12K database. CC is the clustering coefficient. 95

5.3 Comparison of macro-F1, precision and recall scores achieved by 7 meth-
ods at the type (low diversity, with 47 classes) and family (high diversity,
with 696 classes) and tiny (5k graphs across 5 balanced classes) classi-
fication levels. Comparing methods across type and family, the classifi-
cation task becomes increasingly difficult as diversity and data imbalance
increase. 101

5.4 Descriptive statistics for each graph type in MALNET-GRAPH. 104

6.1 MALNET-GRAPH has 1.2M images across a hierarchy of 47 types and 696
families. 106

6.2 The number of images and families in each type of malware in MALNET-
GRAPH. 109

6.3 We evaluate the performance of 3 popular architectures—ResNet, DenseNet
and MobileNetV2—on its macro-F1, macro-precision, and macro-recall.
Model performance is similar across architectures, while model size (pa-
rameters) and computational cost (MFlops) varies widely. As a result, we
conduct all additional experiments using a ResNet18 model as it provides
a strong balance between performance and training time. 114

7.1 Class-Feature Matrix. Top: dots mark classes’ features. Bottom: four class
sets with varying levels of feature overlap. Features vehicle and coach have
sub-features not listed here due to space (see Github repository). 139

7.2 Number of images used to train and evaluate models K, M and defense
framework D. We train K on PASCAL-Part dataset, and model M on
PASCAL VOC 2010 plus a subset of ImageNet. Four class sets are in-
vestigated in the evaluation, with varying classes and feature overlap. We
evaluate model M and defense framework D on Flickr. 140

x

7.3 Number of images used to evaluate the detection capability of UNMASK.
Only images that are successfully attacked are used for evaluation (com-
bined with their benign counterparts), thus the variations in numbers. We
report values for PGD and MIA with ε=16, respectively. Numbers are sim-
ilar for ε=8. 140

7.4 Accuracies in countering 4 strong attacks at 2 strength levels (PGD-L∞,
PGD-L2, MIA-L∞, MIA-L2), using 2 CNN architectures as unprotected
model M across 4 class sets. UNMASK (“UM”) provides significantly bet-
ter protection than adversarial training (“AT”), 31.18% on average. “None”
means no defense. 141

8.1 Dataset summary outlining the number of 30 second EEG recordings be-
longing to each sleep stage class. 151

8.2 Line search results for identifying optimal cg on Sleep-EDF and SHHS
datasets. Macro-F1 is abbreviated F1 in table; average macro-F1 is the
mean of all macro-F1 scores. We select cg=0.2 for both datasets as it repre-
sents a good trade-off between benign and Gaussian macro-F1. 156

8.3 Grid search results for λo and λg on Sleep-EDF dataset. Macro-F1 is abbre-
viated as F1 in table; average macro-F1 is the mean of all macro-F1 scores.
We select λo and λg with highest average macro-F1 score. 156

8.4 Meta Analysis: Comparison of macro-F1 scores achieved by each model.
The models are evaluated on Sleep-EDF and SHHS datasets with three
types and strengths of noise corruption. We bold the compressed model
with the best performance (averaged over 3 runs) and report the standard
deviation of each model next to the macro-F1 score. REST performs better
in all noise test measurements. 157

8.5 Comparison on model size and the FLOPS required to score a single night
of EEG recordings. REST models are significantly smaller and comparable
in size/compute to baselines. 161

xi

LIST OF FIGURES

1.1 A visual overview of the robustness work surveyed. 3

1.2 TIGER provides a number of important tools for graph vulnerability and
robustness research, including graph robustness measures, attack strategies,
defense techniques and simulation models. Here, a TIGER user is visualiz-
ing a computer virus simulation that follows the SIS infection model (effec-
tive strength s = 3.21) on the Oregon-1 Autonomous System network [4].
Top: defending only 5 nodes with Netshield [5], the number of infected
entities is reduced to nearly zero. Bottom: without any defense, the virus
remains endemic. 4

1.3 D2M framework: 1. Builds an authentication graph from device authenti-
cation history; 2. Allows security analysts to test different attack strategies
to study network vulnerability; 3. Identifies at-risk machines to monitor,
preempting lateral attacks. 5

1.4 MALNET-GRAPH: Advancing State-of-the-Art Graph Databases. MALNET-
GRAPH contains 1, 262, 024 function call graphs averaging 17, 242 nodes
and 39, 043 edges per graph, across a hierarchy of 47 types and 696 families
of malware. 7

1.5 UNMASK combats adversarial attacks (in red) through extracting robust
features from an image (“Bicycle” at top), and comparing them to ex-
pected features of the classification (“Bird” at bottom) from the unprotected
model. Low feature overlap signals an attack. 9

1.6 REST Overview: (from left) When a noisy EEG signal belonging to the
REM (rapid eye movement) sleep stage enters a traditional neural network
which is vulnerable to noise, it gets wrongly classified as a Wake sleep
stage. On the other hand, the same signal is correctly classified as the REM
sleep stage by the REST model which is both robust and sparse. (From
right) REST is a three step process involving (1) training the model with
adversarial training, spectral regularization and sparsity regularization (2)
pruning the model and (3) re-training the compact model. 9

xii

2.1 A visual overview of the work surveyed . §2 summarizes and compares 18
graph robustness. §3 overviews methods of network failure and attack. §4
summarizes network defense techniques across a variety of graph topolo-
gies and attack vectors. 17

3.1 TIGER provides a number of important tools for graph vulnerability and ro-
bustness research, including graph robustness measures, attack strategies,
defense techniques and simulation models. Here, a TIGER user is visualiz-
ing a computer virus simulation that follows the SIS infection model (effec-
tive strength s = 3.21) on the Oregon-1 Autonomous System network [4].
Top: without any defense, the virus remains endemic. Bottom: defending
only 5 nodes with Netshield [5], the number of infected entities is reduced
to nearly zero. 51

3.2 Error of 5 fast, approximate robustness measures supported by TIGER. Pa-
rameter k represents the trade-off between speed (low k) and precision
(high k). To measure approximation efficacy, we vary k ∈ [5, 300] in incre-
ments of 10 and measure the error between the approximate and original
measure averaged over 30 runs on a clustered scale-free graph with 300
nodes. 53

3.3 TIGER simulation of an RD node attack on the KY-2 water distribution net-
work. Step 0: network starts under normal conditions; at each step a node
is removed by the attacker (red nodes). Step 13, 22 & 27: after removing
only a few of the 814 nodes, the network splits into two and three and four
disconnected regions, respectively. 56

3.4 Efficacy of 5 edge attacks (left) and 5 node attacks (right) on the KY-2
water distribution network. The most effective attack (RB) disconnects
approximately 50% of the network with less than 30 removed edges (or
nodes). 58

3.5 Comparing ability of 5 edge defenses to improve KY-2 network robustness
after removing 30 nodes via RB attack. Edge addition performs the best,
with random edge rewiring performing the worst. 61

3.6 Effect of network redundancy r on the US power grid where 4 nodes are
overloaded using ID. When r ≥ 50% the network is able to redistribute the
increased load. 62

xiii

3.7 TIGER cascading failure simulation on the US power grid network when
4 nodes are overloaded according to the ID attack strategy. Time step 1:
shows the network under normal conditions. Time step 50: we observe a
series of failures originating from the bottom of the network. Time step 70:
most of the network has collapsed. 63

3.8 SIS simulation with 5 virus strengths on the Oregon-1 Autonomous System
network. No defense (left), Netshield defense (right). 66

4.1 Our D2M framework: 1. Builds an authentication graph from device au-
thentication history; 2. Allows security analysts to test different attack
strategies to study network vulnerability; 3. Identifies at-risk machines to
monitor, preempting lateral attacks. 71

4.2 Attack path generated by D2M . 1. Network is penetrated; 2-4. Attacker
explores the network and escalates privileges; 5. Attacker compromises the
domain controller, gaining control of the network. 77

4.3 Each defense strategy is compared on three graphs and attack strategies,
where ANOMALYSHIELD performs well across a majority of application
scenarios. 87

5.1 MALNET-GRAPH has 1.2M graphs averaging 15k nodes and 35k edges per
graph. 91

5.2 Example of the graph type “worm” and its 7 families. 93

5.3 FCG from the Banker++Trojan type, and Acecard family. Nodes represent
functions and edges indicate inter-procedural calls. Highlighted in blue is
one potential execution path. 94

5.4 Class-wise comparison of model predictions where a darker cell represents
a higher F1 score. We observe that certain classes are more challenging to
classify than others. 102

6.1 Type and family labels have imbalance ratios of 7, 827× and 16, 901×, re-
spectively. 108

6.2 Left: Android DEX file structure, composed of three major components—
(1) header, (2) ids, and (3) data. Right: binary image representation of the
DEX file. 110

xiv

6.3 Images of two malware types with different “texture”. Left: the Trojan
image is more “fine-grained”. Right: the Adware image is more “coarse”.
Malware images belonging to the same type or family often appear visually
similar in layout and texture, whereas images across types and families
contain noticeable differences in layout and texture. 111

6.4 MALNET-IMAGE EXPLORER. An exploration panel on the left allows
users to select from the available images types and families. Users can
then visually the image on the right. 112

6.5 Malware detection ROC curve with an AUC of 0.94, demonstrating the
potential of binary images as an effective form of malware detection. . . . 116

6.6 Model attention patterns across 4 types of malware (each with 2 images).
Ransom++Trojan: narrowly focused on thin region of data section. Be-
nign: wide range of attention across data section. Adware: attention on
circular bytecode “hotspots”. Monitor: focus on “empty” black region of
data section. 117

6.7 Malware classification results using confusion matrix heatmap (classes in
descending order of size). We analyze type level classification perfor-
mance, where a dark diagonal indicates strong performance, and a dark
off-diagonal indicates poor performance. Each square in the diagonal indi-
cates the percent of examples correctly classified for a particular malware
type; and each off-diagonal entry indicates the percent of incorrectly clas-
sified examples for a particular type. 120

7.1 UNMASK combats adversarial attacks (in red) through extracting robust
features from an image (“Bicycle” at top), and comparing them to ex-
pected features of the classification (“Bird” at bottom) from the unprotected
model. Low feature overlap signals an attack. UNMASK rectifies misclassi-
fication using the image’s extracted features. Our approach detects 96.75%
of gray-box attacks (at 9.66% false positive rate) and defends the model by
correctly classifying up to 93% of adversarial images crafted by Projected
Gradient Descent (PGD). 124

7.2 Line search for adversarial training parameter ε on validation data. We
select ε = 4, since it provides the best performance on most attacks. 133

7.3 Detailed bar chart describing the performance of ε across all attack vectors.
We select ε = 4, since it provides the best performance on most attacks. . . . 134

xv

7.4 Accuracies (in %) for each class set averaged across all attack vectors,
strengths, and models from Table 7.4. On average, UNMASK (UM) per-
forms 31.18% better than adversarial training (AT) and 74.44% than no
defense (None). 136

7.5 UNMASK’s effectiveness in detecting 4 strong attacks at two strength lev-
els. UNMASK’s protection may not be affected strictly based on the number
of classes. Rather, an important factor is the feature overlap among classes.
UNMASK provides better detection when there are 5 classes (dark orange;
23.53% overlap) than when there are 3 (light blue; 50% overlap). Keeping
the number of classes constant and varying their feature overlap also sup-
ports our observation about the role of feature overlap (e.g., CS3a at 6.89%
vs. CS3b at 50%). Dotted line indicates random guessing. 137

8.1 Top: we generate hypnograms for a patient in the SHHS test set. In the pres-
ence of Gaussian noise, our REST-generated hypnogram closely matches
the contours of the expert-scored hypnogram. Hypnogram generated by a
state-of-the-art (SOTA) model by Sors et al. [316] is considerably worse.
Bottom: we measure energy consumed (in Joules) and inference time (in
seconds) on a smartphone to score one night of EEG recordings. REST is
9X more energy efficient and 6X faster than the SOTA model. 143

8.2 REST Overview: (from left) When a noisy EEG signal belonging to the
REM (rapid eye movement) sleep stage enters a traditional neural network
which is vulnerable to noise, it gets wrongly classified as a Wake sleep
stage. On the other hand, the same signal is correctly classified as the REM
sleep stage by the REST model which is both robust and sparse. (From
right) REST is a three step process involving (1) training the model with
adversarial training, spectral regularization and sparsity regularization (2)
pruning the model and (3) re-training the compact model. 144

8.3 Line search results for ε on Sleep-EDF and SHHS datasets. We select ε=10,
since it provides the best average macro-F1 score on both datasets. 155

8.4 Meso Analysis: Class-wise comparison of model predictions. The models
are evaluated over the SHHS test set perturbed with different noise types.
In each confusion matrix, rows are ground-truth classes while columns are
predicted classes. The intensity of a cell is obtained by normalizing the
score with respect to the class membership. When a cell has a value of 1
(dark blue, or dark green) the model predicts every example correctly, the
opposite occurs at 0 (white). A model that is performing well would have a
dark diagonal and light off-diagonal. REST has the darkest cells along the
diagonal on both datasets. 159

xvi

8.5 Granular Analysis: Comparison of the overnight hypnograms obtained for
a patient in the SHHS test set. The hypnograms are generated using the
Sors (left) and REST (right) models in the presence of increasing strengths
of Gaussian noise. When no noise is present (top row), both models per-
form well, closely matching the ground truth (bottom row). However, with
increasing noise, Sors performance rapidly degrades, while REST continues
to generate accurate hypnograms. 160

8.6 Time and energy consumption for scoring a single night of EEG recordings.
REST(A+S) is significantly faster and more energy efficient than the state-
of-the-art Sors model. Evaluations were done on a Pixel 2 smartphone. . . . 160

xvii

SUMMARY

As society and technology becomes increasingly interconnected, so does the threat
landscape. Once isolated threats now pose serious concerns to highly interdependent sys-
tems, highlighting the fundamental need for robust machine learning. This dissertation con-
tributes novel tools, algorithms, databases and models—through the lens of robust machine

learning—in a research effort to solve large-scale societal problems affecting millions of
people in the areas of cybersecurity and healthcare.
(1) Tools: We develop TIGER, the first comprehensive graph robustness toolbox; and our
ROBUSTNESS SURVEY identifies critical yet missing areas of graph robustness research.
(2) Algorithms: Our survey and toolbox reveal existing work has overlooked lateral attacks
on computer authentication networks. We develop D2M, the first algorithmic framework
to quantify and mitigate network vulnerability to lateral attacks by modeling lateral attack
movement from a graph theoretic perspective.
(3) Databases: To prevent lateral attacks altogether, we develop MALNET-GRAPH, the
worlds largest cybersecurity graph database—containing over 1.2M graphs across 696

classes—and show the first large-scale results demonstrating the effectiveness of mal-
ware detection through a graph medium. We extend MALNET-GRAPH by constructing the
largest binary-image cybersecurity database—containing 1.2M images, 133×more images
than the only other public database—enabling new discoveries in malware detection and
classification research restricted to a few industry labs (MALNET-IMAGE).
(4) Models: To protect systems from adversarial attacks, we develop UNMASK, the first
model that flags semantic incoherence in computer vision systems, which detects up to
96.75% of attacks, and defends the model by correctly classifying up to 93% of attacks.
Inspired by UNMASK’s ability to protect computer visions systems from adversarial attack,
we develop REST, which creates noise robust models through a novel combination of
adversarial training, spectral regularization and sparsity regularization. In the presence
of noise, our method improves state-of-the-art sleep stage scoring by 71%—allowing us to
diagnose sleep disorders earlier on and in the home environment—while using 19× less
parameters and 15× less MFLOPS.

Our work has made significant impact to industry and society: the UNMASK framework
laid the foundation for a multi-million dollar DARPA GARD award; the TIGER toolbox
for graph robustness analysis is a part of the Nvidia Data Science Teaching Kit, available to
educators around the world; we released MALNET, the world’s largest graph classification
database with 1.2M graphs; and the D2M framework has had major impact to Microsoft
products, inspiring changes to the product’s approach to lateral attack detection.

xviii

CHAPTER 1
INTRODUCTION

While the advancing era of web connected devices has resulted in many technological
breakthroughs, the interconnected nature of these devices has created a demand for robust
machine learning that is resilient to both natural threats and targeted actors. In its recent
2020 report, the U.S. National Science and Technology Council wrote a report [1] outlined
how AI is changing the landscape of cyber warfare, detailing how cyber systems will auto-
matically carry out attacks and defend cyberspace with the assistance of human-in-the-loop
operators. Through my diverse research experience at government research laboratories,
private defense contractors, Microsoft’s Advanced Threat Protection team, and Amazon’s
Fraud Detection and Risk Transaction team, it is clear that artificial intelligence is trans-
forming cybersecurity and healthcare across the public and private sector. The question is,
how do we robustify artificial intelligence to defend against this vast threat landscape? This
thesis advances the state-of-the-art through the development of robust models, algorithms,
databases and tools to solve large-scale societal problems in cybersecurity and healthcare,
by addressing real-world problems affecting millions of people. The publications and work
from this research are listed in Table 1.1

1.1 Thesis Overview

We provide an overview of the thesis, listing the problems we address and presenting a
summary of our contributions. Our research groups into four interrelated topics, which
form the main thrusts of the thesis.

1.1.1 Part I: Robust Tools

Attack campaigns from criminal organizations and nation state actors are quickly becom-
ing one of the most powerful forms of disruption. In 2016 alone, malicious cyber activity
cost the U.S. economy between $57 and $109 billion [2]. These cyber-attacks are often
highly sophisticated, targeting governments and large-scale enterprises to interrupt critical
services and steal intellectual property [3]. This has led to a rallying cry for new cyberse-
curity defense systems that can democratize cybersecurity knowledge and tools have been
scattered across are disparate technical fields, or in the possession of a few industry labs.

Graph Vulnerability and Robustness: A Survey (Chapter 2). We present a survey on

1

Part I: Robust Tools

� Graph Vulnerability and Robustness: A Survey. Scott Freitas, Diyi Yang, Srijan Kumar,
Hanghang Tong, Duen Horng Chau. [Under review] IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2021. https://arxiv.org/pdf/2105.00419.pdf

(Chapter 2)

� Evaluating Graph Vulnerability and Robustness using TIGER. Scott Freitas, Diyi Yang,
Srijan Kumar, Hanghang Tong, Duen Horng Chau. ACM International Conference on
Information and Knowledge Management (CIKM), 2021. https://arxiv.org/abs/

2006.05648 (Chapter 3)

Part II: Robust Algorithms

� D2M: Dynamic Defense and Modeling of Adversarial Movement in Networks. Scott
Freitas, Andrew Wicker, Duen Horng Chau, Joshua Neil. SIAM International Conference
on Data Mining (SDM), 2020. https://arxiv.org/abs/2001.11108 (Chapter 4)

Part III: Robust Databases

� A Large-Scale Database for Graph Representation Learning. Scott Freitas, Yuxiao
Dong, Joshua Neil, Duen Horng Chau. Neural Information Processing Systems (NIPS)
Datasets and Benchmarks, 2021. https://arxiv.org/abs/2011.07682 (Chapter 5)

� A Large-Scale Image Database of Malicious Software. Scott Freitas, Rahul Duggal,
Duen Horng Chau. [Submitting to] Knowledge Discovery and Data Mining (KDD), 2022.
https://arxiv.org/abs/2102.01072 (Chapter 6)

Part IV: Robust Models

� UnMask: Adversarial Detection and Defense Through Robust Feature Alignment. Scott
Freitas, Shang-Tse Chen, Zijie J. Wang, Duen Horng Chau. IEEE International Conference
on Big Data (Big Data), 2020. https://arxiv.org/abs/2002.09576 (Chapter 7)

� REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild. Rahul
Duggal*, Scott Freitas*, Cao Xiao, Duen Horng Chau, Jimeng Sun. Proceedings of
The Web Conference (WWW), 2020. * Both authors contributed equally to this research.
https://arxiv.org/abs/2001.11363 (Chapter 8)

Table 1.1: The publications mapped to the thesis outline.

2

https://arxiv.org/pdf/2105.00419.pdf
https://arxiv.org/abs/2006.05648
https://arxiv.org/abs/2006.05648
https://arxiv.org/abs/2001.11108
https://arxiv.org/abs/2011.07682
https://arxiv.org/abs/2102.01072
https://arxiv.org/abs/2002.09576
https://arxiv.org/abs/2001.11363

§4 Defense
Techniques

Discussion of defenses
against multiple failures.

§2 Robustness
Measures

Summary & comparison
of 18 robustness metrics

Graph Measures
• Diameter

• Average distance

• Edge connectivity

Adjacency Measures
• Spectral radius

• Spectral scaling

• Natural connectivity

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

Laplacian Measures
• Effective Resistance

• Algebraic connectivity

• Number of Trees

-1
-1

-1
-1

-1
-1

-1

-1

-1

-1
-1

-1
-1

-1

-1

-1

-1
-1

3

2
3

3
2

3
2

12

Cascading Failure

Sequential failure
of nodes

§3 Failure
Scenarios

Study of failure scenarios
on various graph types.

Targeted Attack

Intentional
node damage
Intentional
node damage

Natural Failure

Failure of a
single node

Edge Addition Edge Rewire
(e.g., high centrality)(e.g., high centrality)

Node Monitor Edge Addition Edge Rewire Node Monitor Edge Addition Edge Rewire Node Monitor

1122 11122

Figure 1.1: A visual overview of the robustness work surveyed.

the role of network robustness as a critical tool in the characterization and understanding
of complex interconnected systems such as infrastructure, communication and social net-
works. We find that answers to key robustness questions are currently scattered across
multiple scientific fields and numerous papers. In this survey, we distill key findings across
numerous domains and provide researchers crucial access to important information by—(1)
summarizing and comparing recent and classical graph robustness measures; (2) exploring
which robustness measures are most applicable to different categories of networks (e.g.,
social, infrastructure); (3) reviewing common network attack strategies, and summarizing
which attacks are most effective across different network topologies; and (4) extensive dis-
cussion on selecting defense techniques to mitigate attacks across a variety of networks
(see Figure 1.1 for a visual overview). This survey guides researchers and practitioners in
navigating the expansive field of network robustness, while summarizing answers to key
questions.

Evaluating Graph Vulnerability and Robustness using TIGER (Chapter 3). Having
extensively surveyed the field of graph vulnerability and robustness, we find that the cross-
disciplinary nature of graph robustness research often means that important discoveries
made in one field are not quickly disseminated to others, hindering reproducibility and ex-
amination of existing work, development of new research, and dissemination of new ideas.
Unfortunately, no comprehensive open-source toolbox currently exists to assist researchers
and practitioners in this important topic. We believe a unified and easy-to-use software
framework is key to standardizing the study of network robustness, helping accelerate re-
producible research and dissemination of ideas. Through analyzing and understanding the
robustness of these networks we can: (1) quantify network vulnerability and robustness,
(2) augment a network’s structure to resist attacks and recover from failure, and (3) con-

3

Figure 1.2: TIGER provides a number of important tools for graph vulnerability and robustness
research, including graph robustness measures, attack strategies, defense techniques and simulation
models. Here, a TIGER user is visualizing a computer virus simulation that follows the SIS infec-
tion model (effective strength s = 3.21) on the Oregon-1 Autonomous System network [4]. Top:
defending only 5 nodes with Netshield [5], the number of infected entities is reduced to nearly zero.
Bottom: without any defense, the virus remains endemic.

trol the dissemination of entities on the network (e.g., viruses, propaganda). We contribute
TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains 22
graph robustness measures with both original and fast approximate versions; 17 failure and
attack strategies; 15 heuristic and optimization based defense techniques; and 4 simulation
tools (see Figure 1.2 for one type of simulation and defense tool available in TIGER).
By democratizing the tools required to study network robustness, our goal is to assist re-
searchers and practitioners in analyzing their own networks; and facilitate the development
of new research in the field.

1.1.2 Part II: Algorithms

Through our survey and the development of the TIGER toolbox, we find that network
robustness research primarily focuses on the development of algorithms to study social
networks and infrastructure networks, but fails to address important issues in the domain

4

Penetrate Explore Compromise

1. Build Authentication Graph 2. Analyst Tests Attack Strategy 3. Vulnerability Analysis

User

Admin

Domain
Controller

1 1

2

1

2

3

MonitoredMonitored

Figure 1.3: D2M framework: 1. Builds an authentication graph from device authentication history;
2. Allows security analysts to test different attack strategies to study network vulnerability; 3.
Identifies at-risk machines to monitor, preempting lateral attacks.

of cybersecurity. In particular, as a first step we chose to address this problem by study-
ing robustness of authentication graphs in enterprise networks to lateral attacks (D2M).
Working with researchers, engineers and threat hunters in the Microsoft Advanced Threat
Protection (ATP) group, we developed D2M, the first graph-theoretic framework that sys-
tematically quantifies network vulnerability to lateral attack and identifies at-risk devices
(see Figure 1.3). This is a high impact problem, since once an attacker has compromised a
single credential for an enterprise machine, the whole network becomes vulnerable to lat-
eral attack movements [6], allowing the adversary to eventually gain control of the network
(i.e., escalating privileges via credential stealing [7]).

D2M: Dynamic Defense and Modeling of Adversarial Movement in Networks (Chap-
ter 4). Our survey and toolbox reveal existing work has overlooked lateral attacks on
computer authentication networks. We develop D2M , the first algorithmic framework to
quantify and mitigate network vulnerability to lateral attacks by modeling lateral attack
movement from a graph theoretic perspective. We formulate a novel Monte-Carlo method
that calculates network robustness to lateral attacks as a probabilistic function of the net-
work topology, and then develop a suite of five fast graph mining techniques to identify
enterprise machines at risk to lateral attacks. Despite the prevalence of lateral attacks, ob-
serving and analyzing them is challenging for multiple reasons: (1) lateral attacks are still
relatively sparse compared to the unsuccessful attack; (2) attack ground-truth is hard to
ascertain, and generally partially uncovered through investigation; and (3) due to the fact
that the adversary already has a valid credential for the network, attackers can operate as a
legitimate user. While real attack data does exist—due to the above challenges, it is rarely
fully visible, or accessible, making the study of a “complete” attack highly problematic.
D2M has led to major impact to the Microsoft Defender Advanced Threat Protection prod-
uct, inspiring changes to the product’s approach to detect and prevent lateral movement,
well known as one of the most challenging areas of post-breach detection.

5

1.1.3 Part III: Databases

To prevent lateral attacks altogether (Part 1.1.2), we create two new cybersecurity databases
to enable the development of next-generation malware detection models. We develop the
worlds largest cybersecurity graph database—containing over 1.2 million graphs across 696

classes—and show the first large-scale results demonstrating the effectiveness of malware
detection through a graph medium (MALNET-GRAPH). We then expand upon MALNET-
GRAPH by constructing the largest binary-image cybersecurity database—containing 1.2

million images, 24× more images than the only other public database—enabling new dis-
coveries in malware detection and classification research previously restricted to a few
industry labs (MALNET-IMAGE).

A Large-Scale Database for Graph Representation Learning (Chapter 5). A majority
of malware samples are polymorphic in nature, meaning that subtle source code changes
in the original malware variant can result in significantly different compiled code (e.g.,
instruction reordering, branch inversion, register allocation) [8, 9]. Cybercriminals fre-
quently take advantage of this to evade signature based detection, a predominant form of
malware detection [10]. Fortunately, these subtle source code changes have minimal ef-
fect on the control flow of the executable, which can be represented with a function call

graph. Research has demonstrated that function call graphs (FCGs) can effectively defeat
the polymorphic nature of malware through techniques like graph matching [11, 12, 13, 14,
15] and representation learning [16, 17].

Unfortunately, no large-scale FCG datasets have been made publicly available largely
due to the proprietary nature of the data. We introduce MALNET-GRAPH, the largest public
graph representation learning database ever constructed, representing a large-scale ontol-
ogy of software function call graphs. MALNET-GRAPH contains over 1.2 million graphs,
averaging over 17k nodes and 39k edges per graph, across a hierarchy of 47 types and
696 families. Compared to the only other public FCG database [18], MALNET-GRAPH

offers 927× more graphs, 22× larger graphs on average, and 348× more classes (see Fig-
ure 1.4 for a comparison of graph representation learning databases). We provide a de-
tailed analysis of MALNET-GRAPH, discussing its properties and provenance, along with
the evaluation of state-of-the-art machine learning and graph neural network techniques.
The unprecedented scale and diversity of MALNET-GRAPH offers exciting opportunities
to advance the frontiers of cybersecurity through graph representation learning—enabling
new discoveries and research into imbalanced classification, explainability and the impact
of class hardness.

A Large-Scale Image Database of Malicious Software. (Chapter 6). Computer vision

6

Cybersecurity Computer Vision Social NetworkBioinformaticSmall Molecule

1M100

100

10

10 10k 100k

10k

1k

1k
1

Number of graphs

Avg #
nodes

MalNet
696 classes

FIRSTMM-DB
CGD

DD

ENZYMES
PROTEINS

REDDIT-12K

Twitch-E

Deezer-E

Github-S

Reddit-T

REDDIT-5K
REDDIT-B

MUTAG
PTC-MR

PCBANCI1

Fingerprint
Letter (low-med)

Letter (high)
HIV

YEAST

MUV

COLLAB

IMDB-M
IMDB-B

Node size scales w/ number of classes

1.2M
graphs
1.2M
graphs

17k nodes average15k nodes average

Figure 1.4: MALNET-GRAPH: Advancing State-of-the-Art Graph Databases. MALNET-GRAPH

contains 1, 262, 024 function call graphs averaging 17, 242 nodes and 39, 043 edges per graph,
across a hierarchy of 47 types and 696 families of malware.

is playing an increasingly important role in automated malware detection with the rise of
the image-based binary representation. These binary images are fast to generate, require
no feature engineering, and are resilient to popular obfuscation methods. Significant re-
search has been conducted in this area, however, it has been restricted to small-scale or
private datasets that only a few industry labs and research teams have access to. This lack
of availability hinders examination of existing work, development of new research, and dis-
semination of ideas. We release MALNET-IMAGE, the largest public cybersecurity image
database, offering 24×more images and 70×more classes than existing databases (avail-
able at https://mal-net.org). MALNET-IMAGE contains over 1.2 million malware
images—across 47 types and 696 families—democratizing image-based malware capabil-
ities by enabling researchers and practitioners to evaluate techniques that were previously
reported in propriety settings. We report the first million-scale malware detection results
on binary images. MALNET-IMAGE unlocks new and unique opportunities to advance the
frontiers of machine learning, enabling new research directions into vision-based cyber
defenses, multi-class imbalanced classification, and interpretable security.

1.1.4 Part IV: Robust Models

Deep learning has seen rapid development in the fields of cybersecurity and healthcare due
to its state-of-the-art performance on a wide range of challenging tasks. However, these

7

https://mal-net.org

highly advanced architectures are vulnerable to adversarial manipulation, resulting in a va-
riety of system failures. Our research tackles two high-impact societal problems in cyberse-
curity and healthcare affecting millions of lives—through the lens of robust deep learning

models—including: (1) the protection of computer vision systems, such as those on self
driving cars, by creating robust models that closely align the human visual perception and
cognition system with that of machine intelligence (UNMASK); and (2) the development
of noise robust deep learning models, which allows us to detect sleep disorders at an earlier
stage in the comfort of their own home (REST). Through UNMASK, where we developed
deep learning models to identify robust features in image data, we apply this idea to the
healthcare setting where we develop models that target robust signal information in EEG
data to enable noise robust sleep monitoring.

UnMask: Adversarial Detection and Defense Through Robust Feature Alignment
(Chapter 7). To protect computer vision systems from adversarial attack, such as those on
self driving cars, we have developed UNMASK, an adversarial detection and defense frame-
work. UNMASK combats adversarial attacks through semantic coherence alignment—
extracting robust features (e.g., beak, wings, eyes) from an image (e.g., “bird”) and aligning
them with the expected classification features. For example, if the extracted features for a
“bird” image are wheel, saddle and frame, the model may be under attack (see Figure 1.5).
UNMASK detects such attacks and defends the model by rectifying the misclassification,
re-classifying the image based on its robust features. Our extensive evaluation shows that
UNMASK detects up to 96.75% of attacks, and defends the model by correctly classifying
up to 93% of adversarial images produced by the current strongest attack, Projected Gra-
dient Descent, in the gray-box setting. UNMASK provides significantly better protection
than adversarial training across 8 attack vectors, averaging 31.18% higher accuracy.

REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild (Chap-
ter 8). As many as 70 million Americans suffer from sleep disorders that affects their daily
functioning, long-term health and longevity. The long-term effects of sleep deprivation
and sleep disorders include an increased risk of hypertension, diabetes, obesity, depres-
sion, heart attack, and stroke [19]. The cost of undiagnosed sleep apnea alone is estimated
to exceed 100 billion in the US [20]. To combat this, significant attention has been de-
voted towards integrating deep learning technologies in the healthcare domain. However,
to safely and practically deploy deep learning models for home health monitoring, two
significant challenges must be addressed: the models should be (1) robust against noise;
and (2) compact and energy-efficient. We propose REST, a new method that simultane-
ously tackles both issues via 1) adversarial training and controlling the Lipschitz constant
of the neural network through spectral regularization while 2) enabling neural network

8

"Bird"
(Attacked)

Bicycle
(Correctly Classified)

Bird
(Misclassified)

Similarity Comparison
Wheel

Frame
Saddle Handlebar

Pedal

Object Detector
Extracts Features

Vulnerable Model
Feature Mismatch
Attack Detected

Attack Detection1 Rectification2

UNMASK Unmasking Attacks using Robust Feature Alignment

Figure 1.5: UNMASK combats adversarial attacks (in red) through extracting robust features from
an image (“Bicycle” at top), and comparing them to expected features of the classification (“Bird”
at bottom) from the unprotected model. Low feature overlap signals an attack.

EEG Sensor
REM

Wake
Vulnerable to noise

Vanilla Model
X

Noisy REM Signal

Gaussian Noise

Robust + Sparse
R��� 3: Re-train Model2: PruneModel1: TrainModel

LADV + LSPCLADV+ LSPC+ LSPA

R��� P������R��� P������

Figure 1.6: REST Overview: (from left) When a noisy EEG signal belonging to the REM (rapid
eye movement) sleep stage enters a traditional neural network which is vulnerable to noise, it gets
wrongly classified as a Wake sleep stage. On the other hand, the same signal is correctly classified as
the REM sleep stage by the REST model which is both robust and sparse. (From right) REST is a
three step process involving (1) training the model with adversarial training, spectral regularization
and sparsity regularization (2) pruning the model and (3) re-training the compact model.

compression through sparsity regularization (see Figure 1.6). We demonstrate that REST
produces highly-robust and efficient models that substantially outperform the original full-
sized models in the presence of noise. For the sleep staging task over single-channel elec-
troencephalogram (EEG), the REST model achieves a macro-F1 score of 0.67 vs. 0.39
achieved by a state-of-the-art model in the presence of Gaussian noise while obtaining 19×
parameter reduction and 15× MFLOPS reduction on two large, real-world EEG datasets.
By deploying these models to an Android application on a smartphone, we quantitatively
observe that REST allows models to achieve up to 17× energy reduction and 9× faster
inference.

9

1.2 Thesis Statement

To address large-scale societal problems in cybersecurity and healthcare through the lens

of robust machine learning by developing:

1. tools that guide and assist researchers in navigating the complex field of graph ro-
bustness;

2. algorithms that quantify network vulnerability to lateral attack and guide enterprise
system defense resource allocation;

3. databases that enable the development of next-generation strong cybersecurity de-
fenses;

4. models that are robust to noise and adversarial manipulation, helping guard against
surprise attacks and catastrophic failure.

1.3 Research Contributions

New graph algorithms and deep learning models.

• We construct D2M, the first graph theoretic framework that systematically quantifies
network vulnerability to lateral attack and identifies at-risk devices (Chapter 4).

• We develop REST, the first noise-robust and efficient deep learning model designed
for at-home sleep monitoring by endowing models with noise robustness through
(1) adversarial training and (2) spectral regularization; and promoting energy and
computational efficiency by enabling compression through (3) sparsity regulariza-

tion (Chapter 8).

• We contribute UNMASK, the first deep learning framework using semantic coherence
to detect and defeat adversarial attacks by quantifying the similarity between the im-
age’s extracted features with the expected features of its predicted class (Chapter 7).

Large-Scale Databases.

• We introduce MALNET-GRAPH, the largest public graph database ever constructed,
representing a large-scale ontology of software function call graphs. MALNET-
GRAPH contains over 1.2 million graphs, averaging over 17k nodes and 39k edges
per graph, across a hierarchy of 47 types and 696 families. Compared to the popu-
lar REDDIT-12K database, MALNET-GRAPH offers 105× more graphs, 44× larger
graphs on average, and 63× more classes (Chapter 5).

10

• We introduce MALNET-IMAGE, the largest publicly available cybersecurity image
database, offering 24× more images and 70× more classes than existing databases.
The scale and diversity of MALNET-IMAGE unlocks new and exciting cybersecu-
rity opportunities to the computer vision community—democratizing image-based
malware capabilities by enabling researchers and practitioners to evaluate techniques
that were previously reported in propriety settings. (Chapter 6).

Open source tools and knowledge repositories.

• We contribute TIGER, the first open-sourced Python toolbox for graph vulnerability
and robustness analysis. TIGER contains 22 graph robustness measures with both
original and fast approximate versions; 17 failure and attack strategies; 15 heuristic
and optimization based defense techniques; and 4 simulation tools (Chapter 3).

• We distill key findings across numerous graph vulnerability and robustness domains
in the form of a survey paper, providing researchers access to crucial knowledge by—
(1) summarizing recent and classical graph robustness measures; (2) exploring which
robustness measures are most applicable to different domains (e.g., social, infrastruc-
ture); (3) reviewing attack strategy effectiveness across network topologies; and (4)
extensive discussion on selecting defense techniques to mitigate attacks (Chapter 2).

1.4 Impact

• D2M (Chapter 4) has led to major impact to the Microsoft Defender Advanced
Threat Protection product, inspiring changes to the product’s approach to detect
and prevent lateral movement, well known as one of the most challenging areas of
post-breach detection.

• TIGER (Chapter 3) has been integrated into the Nvidia Data Science Teaching
Kit available to educators across the world; and Georgia Tech’s Data and Visual
Analytics class with over 1,000 students.

• UNMASK (Chapter 7) helped win a multi-million dollar DARPA GARD (Guaran-
teeing AI Robustness against Deception) grant.

• MALNET-GRAPH (Chapter 5) represents the worlds largest graph representation
learning database, enabling new research and discoveries into imbalanced classifi-
cation, explainability and the impact of class hardness.

• MALNET-IMAGE (Chapter 6) is the worlds largest binary-image database, un-
locking new and unique opportunities to advance the frontiers of vision-based cyber

11

defenses, multi-class imbalanced classification, and interpretable security.

• Our innovations in graph mining, deep learning, cybersecurity and healthcare were
recognized and invested in by an IBM PhD Fellowship, a Raytheon Fellowship,
and an NSF Graduate Research Fellowship (GRFP).

12

Part I

Robust Tools

13

Overview

We begin by surveying the field of graph vulnerability and robustness, highlighting its long
and diverse history by thoroughly summarizing the state-of-the-art by analyzing over 85

papers and their contributions to the field. Our goal is to guide researchers and practitioners
in navigating the expansive field of network robustness, while summarizing answers to key
questions. Clicking on the link below will open its PDF version in the browser:

Chapter 2: Graph Vulnerability and Robustness: A Survey. Scott Fre-
itas, Diyi Yang, Srijan Kumar, Hanghang Tong, Duen Horng Chau. [Under
Review] IEEE Transactions on Knowledge and Data Engineering (TKDE).
Online, 2021. https://arxiv.org/pdf/2105.00419.pdf

Through the survey, we find that no comprehensive open-source toolbox currently exists
to assist researchers and practitioners in this important topic. This lack of available tools
hinders reproducibility and examination of existing work, development of new research,
and dissemination of new ideas. To address this, we develop TIGER, the first open-sourced
Python toolbox for evaluating network vulnerability and robustness of graphs. TIGER con-
tains 22 graph robustness measures with both original and fast approximate versions when
possible; 17 failure and attack mechanisms; 15 heuristic and optimization based defense
techniques; and 4 simulation tools. Clicking on the link below will open its PDF version in
the browser:

Chapter 3: Evaluating Graph Vulnerability and Robustness using TIGER
Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, Duen Horng Chau.
ACM International Conference on Information and Knowledge Management
(CIKM). Online, 2021. https://arxiv.org/abs/2006.05648

14

https://arxiv.org/pdf/2105.00419.pdf
https://arxiv.org/abs/2006.05648

CHAPTER 2
GRAPH VULNERABILITY AND ROBUSTNESS: A SURVEY

The study of network robustness is a critical tool in the characterization and sense making
of complex interconnected systems such as infrastructure, communication and social net-
works. While significant research has been conducted in these areas, gaps in the surveying
literature still exist. Answers to key questions are currently scattered across multiple sci-
entific fields and numerous papers. In this survey, we distill key findings across numerous
domains and provide researchers crucial access to important information by—(1) summa-
rizing and comparing recent and classical graph robustness measures; (2) exploring which
robustness measures are most applicable to different categories of networks (e.g., social,
infrastructure); (3) reviewing common network attack strategies, and summarizing which
attacks are most effective across different network topologies; and (4) extensive discus-
sion on selecting defense techniques to mitigate attacks across a variety of networks. This
survey guides researchers and practitioners in navigating the expansive field of network
robustness, while summarizing answers to key questions. We conclude by highlighting
current research directions and open problems.

2.1 Introduction

There are three fundamental tasks in the study of network robustness: (i) development of
measures to quantify network robustness, (ii) identification of network attack mechanisms,
and (iii) construction of defensive techniques to resist network failures and recover from
attacks. First mentioned as early as the 1970’s [21], network robustness has a rich and
storied history spanning numerous fields of engineering and science [22, 23, 5, 24]. This
diversity of research has generated a variety of unique perspectives, providing fresh insight
into challenging problems, while equipping researchers with fundamental knowledge for
their investigations. While the fields of study may be diverse, they are linked by a common
definition of network robustness [25, 26, 23]:

Robustness is a measure of a network’s ability to continue functioning when part of the

network is either naturally damaged or targeted for attack.

To provide some intuition for this definition, we consider an example of a power grid
network that is susceptible to both natural failures and targeted attacks. A natural failure
happens when a single power substation fails due to erosion of parts or natural disasters.

15

However, when one substation fails, additional load is routed to alternative substations,
which can cause cascading failures. Not all failures originate from natural causes, some
come from targeted attacks, such as enemy states hacking into the grid to sabotage key
equipment to maximally damage the operations of the electrical grid. Through analyzing
and understanding the robustness of these networks, we can mitigate damage from both
natural failures and targeted attacks, and in some cases, prevent it altogether.

Unfortunately, the nature of cross-disciplinary research also comes with significant
challenges. Oftentimes important discoveries made in one field are not quickly dissemi-
nated, leading to missed innovation opportunities. In this survey, our goal is to distill key
research questions raised in prior related research [26], that if addressed effectively, will as-
sist readers in understanding the complex interconnections of this topic, and accelerate the
dissemination of ideas. Specifically, we analyze and compare numerous classical and mod-
ern robustness techniques—addressing a crucial gap in the survey literature, and helping
set the stage for future work to be built upon.

2.1.1 Contributions

We distill and summarize critical topics found in the literature of network robustness through
contributions C1-C5.

C1. Summary & Comparison of Robustness Measures We summarize 18 modern and
classic network robustness measures, along with how each measure is linked to the evalua-
tion of graph vulnerability and robustness. We then compare robustness measures through
a set of desired robustness measure properties, called axioms, which we identified through-
out the literature. Each axiom captures a different property of network robustness, such
as the ability to identify alternative pathways (e.g., account for multiple routes between
power substations). Our goal is providing researchers a set of tools to objectively compare
robustness measures for use in their own applications.

C2. Exploration of Robustness Measure Applications Not all robustness measures are
equally applicable to every category of network data. For example, the graph clustering
coefficient is important to the study of social networks since it provides an indication of
group “tightness”. However, water distribution networks require measures that can account
for bottlenecks and alternative pathways. We delve into the literature and summarize why
some measures are more applicable to particular domains. In particular, we study two high-
impact use case scenarios—(i) transportation networks and (ii) water distribution networks.

C3. Overview of Network Attack Strategies By understanding the topology of the net-
work, we can analyze the effects of natural failures and targeted attacks. We discuss popular

16

§4 Defense
Techniques

Discussion of defenses
against multiple failures.

§2 Robustness
Measures

Summary & comparison
of 18 robustness metrics

Graph Measures
• Diameter

• Average distance

• Edge connectivity

Adjacency Measures
• Spectral radius

• Spectral scaling

• Natural connectivity

1
1

1

1

1
1

1

1

1

1
1

1

1

1

1

1

1
1

Laplacian Measures
• Effective Resistance

• Algebraic connectivity

• Number of Trees

-1
-1

-1
-1

-1
-1

-1

-1

-1

-1
-1

-1
-1

-1

-1

-1

-1
-1

3

2
3

3
2

3
2

12

Cascading Failure

Sequential failure
of nodes

§3 Failure
Scenarios

Study of failure scenarios
on various graph types.

Targeted Attack

Intentional
node damage
Intentional
node damage

Natural Failure

Failure of a
single node

Edge Addition Edge Rewire
(e.g., high centrality)(e.g., high centrality)

Node Monitor Edge Addition Edge Rewire Node Monitor Edge Addition Edge Rewire Node Monitor

1122 11122

Figure 2.1: A visual overview of the work surveyed . §2 summarizes and compares 18 graph
robustness. §3 overviews methods of network failure and attack. §4 summarizes network defense
techniques across a variety of graph topologies and attack vectors.

network attack strategies, and provide a high level summary of which attack strategies are
best adapted for different network topologies. This attack strategy comparison, as the first
of its kind, provides researchers and practitioners a quick guide to effective attack selection.

C4. Comparison of Network Defense Mechanisms By understanding the common net-
work topologies and attack strategies from C3, we can study the effectiveness of network
defense mechanisms. We summarize numerous defense mechanisms in relation to various
network topologies, mechanisms of natural failure, and targeted attacks across the three
primary mechanisms for defending a network:

(i) edge rewiring (e.g., rewire power lines)

(ii) edge addition (e.g., add additional power lines)

(iii) node monitoring (e.g., closely monitor substation)

Each mechanism has an associated benefit and cost, where some are disproportionately
more expensive than others. We explore these trade-offs with the goal of providing the
reader a comprehensive overview of available defense options across a variety of real world
scenarios to assist in the decision making of network defense. To the best of our knowledge,
this is the first comprehensive comparison of network defense techniques across attack
vectors and network topology.

C5. Highlight Open Problems and Research Directions Through careful analysis of
the existing network robustness literature, we identify and distill open problems that have
strong potential as future research directions. Promising directions and open problems for

17

future network robustness research include— (1) an axiomatic study of desired properties
in robustness measures, helping guide the selection and development of new measures;
(2) interpretability of robustness measures to assist users in understanding the impact of
measure scores; (3) applying the study of network robustness to additional high-impact
domains such as physical security and cybersecurity; and (4) bridging the study of graph
vulnerability and robustness with recent developments in adversarial machine learning on
graph structured data.

2.1.2 Survey Methodology & Summarization Process

We study an extensive number of existing works and identify three main types of research
contributions that they aim to make: (i) study of network robustness measures; (ii) evalu-
ation and development of attacks; and (iii) evaluation and development of defense mecha-
nisms. We frame our work based on these contributions. Doing so allows us to summarize
and compare relevant works from computer science, engineering, mathematics, and the
sciences. This helps equip researchers with fundamental knowledge for their investigation,
and provide them with fresh insights. Specifically, we select works from top journals and
conferences from the relevant domains. Table 2.1 lists some of the most prominent publi-
cation venues and their acronyms. We also include papers posted on arXiv, an open-access,
electronic repository, as many cutting-edge papers are first released here.

As the study of graph robustness has been carried out in a variety of fields (e.g., math-
ematics, physics, computer science), the terminology often varies from field to field. As
such, we refer to the following word pairs interchangeably: (network, graph), (vertex,
node), (edge, link), (adversary, attacker). We follow standard notation and use capital bold
letters for matrices (e.g., A), lower-case bold letters for vectors (e.g., a) and calligraphic
font for sets (e.g., S). Throughout this work we focus our attention on undirected and
unweighted graphs, unless otherwise noted. The reader may want to refer to Table 2.3
throughout the survey for technical terms.

2.1.3 Related Surveys

While many surveys have been conducted in domain specific applications of network ro-
bustness, including water distribution networks [27], airline route networks [28], power
grids [29, 30], to our knowledge there is no survey that summarizes the graph robustness
landscape at large. Different from all the related articles mentioned above, our survey
provides a comprehensive, cross-domain framework to describe graph vulnerability and
robustness, discusses the rapidly growing community at large, and presents major research

18

Nature Nature
PR Physics Reports: A Review Section of Physics Letters
Smart Grid IEEE Transactions on Smart Grid
PNAS National Academy of Sciences of the USA
PRL Physical Review Letters
SIREV SIAM Review
SMC IEEE Systems, Man, and Cybernetics: Systems
TKDE IEEE Transactions on Knowledge & Data Engineering
CNSNS Communications in Nonlinear Science and Numerical

Simulation
KAIS Knowledge and Information Systems
Physica A Physica A: Statistical Mechanics and its Applications
RA Risk Analysis
CHAOS An Interdisciplinary Journal of Nonlinear Science
PLOS PLOS ONE
DMKD Data Mining and Knowledge Discovery
SN Social Networks: An International Journal of Struc-

tural Analysis

PRE Physical Review E
TOPS ACM Transactions on Privacy and Security
EPL A Letters Journal Exploring the Frontiers of Physics
Physica B Physica B: Condensed Matter
JOCN Journal of Complex Networks
EPJ B The European Physical Journal B
CPL Chinese Physics Letters
FCS Frontiers of Computer Science
LAA Linear Algebra and its Applications

Web The Web Conference (formerly WWW)
KDD ACM Knowledge Discovery & Data Mining
WSDM ACM Conference on Web Search & Data Mining
ICDM IEEE International Conference on Data Mining
CIKM ACM Information & Knowledge Management
NDSS Network and Distributed System Security Symposium
INFO IEEE Conference on Computer Communications
CDC IEEE Conference on Decision and Control
SDM SIAM International Conference on Data Mining
PKDD European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in
Databases

PAKDD Pacific-Asia Conference on Knowledge Discovery &
Data Mining

A-POL Transportation Research Part A: Policy and Practice
GLOBE IEEE Global Communications Conference
DRCN Design of Reliable Communication Networks

RNDM Resilient Networks Design and Modeling Workshop
WORM ACM Workshop on Rapid Malcode
SIMPLEX Simplifying Complex Network for Practitioners

arXiv arXiv.org e-Print Archive

Table 2.1: Relevant venues in order of journals, conferences, workshops, and preprints. Within
each category, we order the venues based on the most recently available impact factors reported
officially (e.g., venues’ websites).

19

trajectories synthesized from existing literature.

2.1.4 Survey Organization.

Figure 2.1 shows a visual overview of this survey’s structure and Table 2.2 summarizes
representative works. The remainder of this chapter is divided into seven parts. Each
major component (measures, attacks and defenses) is given one or more sections, ordered
to motivate how each component builds on top of the other.

§§§ 2.2 Summarizing & Comparing Robustness Measures
We summarize recent and classical robustness measures, along with how each mea-
sure is linked to the evaluation of graph vulnerability and robustness. We then create a
table summarizing each robustness measure, allowing users to compare each measures
in a simple manner.

§§§ 2.3 Discussing Network Failures and Targeted Attacks
We discuss natural failures and targeted attacks strategies in relation to common graph
topologies.

§§§ 2.4 Analyzing Network Defense Mechanisms
We summarize common network defense mechanisms that are used to mitigate dam-
age across a variety of network topologies and attacks.

Section 2.5 presents research directions and open problems that we have gathered and
distilled from the literature survey. Section 2.6 concludes the survey.

2.2 Robustness Measures

We begin by summarizing 18 recent and classic robustness measures, dividing each mea-
sure into one of three categories depending on whether it uses the graph (Section 2.2.1),
adjacency matrix (Section 2.2.2) or Laplacian matrix (Section 2.2.3). After describing
each measure, we describe its link to the study of network robustness. We make note
of some additional robustness measures such as scattering number [112], tenacity [113],
integrity [114], fault diameter [24], toughness [21] and isoperimetric number [115]. How-
ever, we do not consider them for evaluation since they are combinatorial measures for
general graphs [47].

20

Robustness Measures AttackDefenseWhere

Work 2.
2.

1
B

in
ar

y
C

on
nn

ec
tiv

ity

2.
2.

1
Ve

rt
ex

C
on

ne
ct

iv
ity

2.
2.

1
E

dg
e

C
on

ne
ct

iv
ity

2.
2.

1
D

ia
m

et
er

2.
2.

1
A

ve
ra

ge
D

is
ta

nc
e

2.
2.

1
A

vg
.

Ve
rt

ex
B

et
w

ee
nn

es
s

2.
2.

1
A

vg
.

E
dg

e
B

et
w

ee
nn

es
s

2.
2.

1
G

lo
ba

lC
lu

st
er

in
g

C
oe

ffi
ci

en
t

2.
2.

1
La

rg
es

tC
on

ne
ct

ed
C

om
po

ne
nt

2.
2.

2
S

pe
ct

ra
lR

ad
iu

s

2.
2.

2
S

pe
ct

ra
lG

ap

2.
2.

2
N

at
ur

al
C

on
ne

ct
iv

ity

2.
2.

2
S

pe
ct

ra
lS

ca
lin

g

2.
2.

2
G

en
er

al
iz

ed
R

ob
us

tn
es

s
In

de
x

2.
2.

3
A

lg
eb

ra
ic

C
on

ne
ct

iv
ity

2.
2.

3
N

um
be

ro
fS

pa
nn

in
g

Tr
ee

s

2.
2.

3
E

ffe
ct

iv
e

R
es

is
ta

nc
e

2.
3.

3
N

od
e

R
em

ov
al

2.
3.

3
E

dg
e

R
em

ov
al

2.
4.

1
E

dg
e

A
dd

iti
on

2.
4.

1
E

dg
e

R
ew

iri
ng

2.
4.

1
N

od
e

M
on

ito
rin

g

P
ub

lic
at

io
n

Ve
nu

e

Albert,et.al.[31] Nature

Alenazi,et.al.[32] RNDM

Alenazi,et.al.[33] DRCN

Baig,et.al.[34] Web

Baras,et.al.[35] CDC

Berdica[36] A-POL

Bernstein,et.al.[37] INFO

Beygelz-
imer,et.al.[23] Physica A

Bigdeli,et.al.[38] SIMPLEX

Bishop,et.al.[39] EPL

Bocca,et.al.[40] PR

Borgatti,et.al.[41] SN

Briesemeis.,et.al.[42] WORM

Buldyrev,et.al.[43] Nature

Byrne,et.al.[44] Sandia

Caballero,et.al.[45] NDSS

Callaway,et.al.[46] PRL

Chan,et.al.[47] SDM

Chakrabarti,et.al.[48] TOPS

Chan,et.al.[26] DMKD

Chen,et.al.[49] TKDE

Chen,et.al.[50] ICDM

Chen,et.al.[51] TKDD

Crucitti,et.al.[52] PRE

Dekker[53] ACSC

Derrible,et.al.[54] Physica A

Duan,et.al.[55] Physica A

Ellens,et.al.[56] LAA

Ellens,et.al.[25] arXiv

Estrada,et.al.[57] Physica B

Estrada,et.al.[58] EPL

Freitas,et.al.[59] SDM

Freitas,et.al.[60] arXiv

Gao,et.al.[61] PRL

Ghosh,et.al.[62] SIREV

Holme,et.al.[63] PRE

Holmgren[64] RA

Jamakovic,et.al.[65] NGI

khalil,et.al.[66] KDD

Kinney,et.al.[67] EPJ B

Klau,et.al.[68] Net. Anal.

Latora,et.al.[69] PRE

Le,et.al.[70] SDM

Leskovec,et.al.[71] KDD

Liu,et.al.[72] FCS

Lu,et.al.[73] PLOS One

Malliaros,et.al.[74] SDM

21

Work 2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

1

2.
2.

2

2.
2.

2

2.
2.

2

2.
2.

2

2.
2.

2

2.
2.

3

2.
2.

3

2.
2.

3

2.
3.

3

2.
3.

3

2.
4.

1

2.
4.

1

2.
4.

1

Venue

Marzo,et.al.[75] RNDM

Mattsson,et.al.[76] A-POL

Mieghem,et.al.[77] PRE

Milanese,et.al.[78] PRE

Motter,et.al.[79] PRE

Nardo,et.al.[80] Water

Nguyen,et.al.[81] Smart Grid

Parandeh.,et.al.[82] GLOBE

Parshani,et.al.[83] PRL

Paul,et.al.[84] EPJ B

Prakash,et.al.[85] PKDD

Prakash,et.al.[86] KAIS

Prakash,et.al.[87] SDM

Rueda,et.al.[88] JNSM

Saha,et.al.[89] SDM

Schneider,et.al.[90] PNAS

Schneider,et.al.[91] PRE

Shao,et.al.[92] PRE

Shargel,et.al.[93] PRL

Sydney,et.al.[94] arXiv

Tanaka,et.al.[95] Nature

Tong,et.al.[5] ICDM

Tong,et.al.[96] CIKM

Torres,et.al.[97] arXiv
Trajanovski,et.al.[98] JOCN

Vespignani,et.al.[99] Nature

Wang,et.al.[100] Physica A

Wang,et.al.[101] EPJ B

Watts,et.al.[102] Nature

Wu,et.al.[103] CPL

Wu,et.al.[104] SMC

Xia,et.al.[105] Physica A

Yang,et.al.[106] PLOS ONE

Yazdani,et.al.[107] CNSNS

Yazdani,et.al.[108] CHAOS

Zeng,et.al.[109] PRE

Zhao,et.al.[110] PRE

Zhao,et.al.[111] PLOS ONE

Table 2.2: Summary of works studied in this survey, each row is one work. Columns are grouped
into one of three categories—robustness measures, attacks and defenses—corresponding to primary
chapter sections (except “where”). In addition, we divide the robustness measure columns into three
categories based on whether it uses the graph, adjacency matrix, or Laplacian matrix, from left to
right, respectively (using dashed lines)

2.2.1 Measures Based on Graph Connectivity

We review 9 of the most common graph robustness measures, each which takes as input an
undirected, unweighted graph G = (V , E), where V is the set of vertices, E ⊆ V ×V is the
set of edges. We let n = |V| and m = |E| as the number of vertices and number of edges,
respectively.

22

Symbol Graph Definitions

G(V , E) graph G, set of nodes V , edges E
n,m number nodes |V |, edges |E|
κ, κv , κe binary, vertex, edge connectivity
d̄ average geodesic distance
dmax graph diameter
b̄v , b̄e avg. vertex, edge betweenness
C global clustering coefficient
L largest connected component

Symbol Adjacency Matrix Definitions

A adjacency matrix
Ai,j element at ith row, jth col.
u(i) eigenvector at position i
ρ = λ1 spectral radius = 1st eigenvalue
λd spectral gap
λ̄ natural connectivity
ξ spectral scaling
rk generalized robustness index

Symbol Laplacian Matrix Definitions

L laplacian matrix
Li,j element at ith row, jth col.
D diagonal matrix
di degree of node i
µ1 smallest eigenvalue of L
µ2 algebraic connectivity of L
T number of spanning trees
R effective resistance

Table 2.3: Symbols and Definition Tables. We divide symbols and definitions based on whether it
corresponds to use with the graph, adjacency matrix or Laplacian matrix. From left to right, symbol
and definition tables for the graph, adjacency matrix and Laplacian matrix.

Binary Connectivity (κ)

A classical graph measure which determines whether or not a graph is connected (κ=1) or
unconnected (κ=0) by examining whether all pairs of vertices have a connecting path. A
graph is considered unconnected if at least one pair of vertices does not have a connecting
path. This can be calculated using breadth-first or depth-first search, starting at any vertex
with time complexity O(n+m).

Robustness link. Practically speaking, binary connectivity is a poor measure of network
robustness since it only identifies whether a network is disconnected.

23

Vertex Connectivity (κv)

An extension of binary connectivity, vertex connectivity κv(G) is the minimal number of
vertices that need to be removed to disconnect the graph κ(G) =min{κv(u, v) | unordered pair (u, v) ∈
G}. Assume (u, v) 6∈ E, then κv(u, v) is the minimal number of vertices that would destroy
every path between vertices u and v. If (u, v) ∈ E, then κ(u, v) = n− 1 [116]. Computing
κ(G) can be reduced to a max-flow problem with a time complexity of O(n8/3m) [117].

Robustness link. This measure has a natural relationship to the robustness of the graph,
since κv(G) increases as the graph becomes harder to disconnect.

Edge Connectivity (κe)

Also an extension of binary connectivity, edge connectivity κe(G) is the minimal number of
edges that can be removed to disconnect the graph κe(G) =min{κe(u, v) | unordered pair (u, v) ∈
G}. Let u, v, be a pair of distinct vertices in graph G, κe(u, v) is the minimal number of
deleted edges that would disconnect all paths between u and v. Calculating κe(u, v) for
each unordered pair, we can ascertain the minimal edge connectivity. The best known
algorithm has a time complexity of O(nm) [117, 116]. For an incomplete graph, an inter-
esting property of vertex and edge connectivity is that κv(G) ≤ κe(G) ≤ δmin(G), where
δmin(G) = min{deg(v) | v ∈ G} [118].

Robustness link. Similar to κv, this measure ties to the naturally ties to graph robustness
since ke(G) increases as the graph becomes harder to disconnect.

Diameter (d)

The diameter d of a connected graph is the longest shortest path between all pairs of nodes
d(G) = max{d(u, v) | unordered pair (u, v) ∈ G}, where d(u, v) is the shortest path
between vertices u and v. In order to calculate the diameter of a network all pairs of
shortest paths need to be computed, requiring a time of complexity of O(n3) using the
Floyd–Warshall algorithm [119].

Robustness link. The diameter has an intuitive connection to robustness, where a decreas-
ing diameter implies better robustness due to increased connectivity.

24

Average Distance (d̄)

The average geodesic distance d̄ in Equation 2.1 provides a measure of network connectiv-
ity by calculating the average distance between all pairs of nodes in the graph.

d̄ =
2

n(n− 1)

∑
u∈V

∑
v∈V
u6=v

d(u, v) (2.1)

For each unordered pair of nodes (u, v) ∈ G in the graph, the shortest path d(u, v) is com-
puted using the Floyd-Warshall algorithm [119], then summed and normalized by 2

n(n−1)

to account for bi-directional paths d(u, v) = d(v, u) in undirected graphs. This measure is
commonly modified to account for disconnected graphs by computing the average inverse
distance, also known as the efficiency, as shown in Equation 2.2. Unfortunately, both av-
erage distance and efficiency have a time complexity of O(n3) due to the all pairs shortest
path computation.

d̄ =
2

n(n− 1)

∑
u∈V

∑
v∈V
u6=v

1

d(u, v)
(2.2)

Robustness link. Average distance has a close relation to network connectivity, where a
small average distance implies a more robust graph. In contrast, a larger efficiency implies
a more robust graph due to inverse computation.

Average Vertex Betweenness (b̄v)

The average vertex betweenness b̄v in Equation 2.3 is the summation of vertex betweenness
bu for every node u ∈ V ,

b̄v =
∑
u∈V

bu (2.3)

where vertex betweenness bu for node u is defined in Equation 2.4 as the number of shortest
paths that pass through u out of the total possible shortest paths.

bu =
∑
s∈V

∑
t∈V
s6=t6=u

ns,t(u)

ns,t
(2.4)

Here ns,t(u) is the number of shortest paths between s and t that pass through u and ns,t is
the total number of shortest paths between s and t [120]. Interestingly, the average vertex
betweenness b̄v can be represented as a linear function of the average distance d̄ [25], as

25

shown in Equation 2.5, implying a strong connection between the robustness properties of
average vertex betweenness and average distance.

b̄v =
1

2
(n− 1)(d̄+ 1) (2.5)

Computing the vertex betweenness centrality bu for a single node u has a time complexity
of O(nm) using Brandes’ algorithm [121]. Therefore, the average vertex betweenness b̄v
has a time complexity of O(n2m).

Robustness link. Average vertex betweenness has a natural connection to graph robustness
since it measures average network throughput of the vertices. The smaller the average the
more robust the network, since load is more evenly distributed across each node.

Average Edge Betweenness (b̄e)

Similar to vertex betweenness, edge betweenness is defined as the number of shortest paths
that pass through an edge e out of the total possible shortest paths. Since the formula
and intuition for calculating average edge betweenness is nearly identical to average node
betweenness, we define it Equation 2.2.1 below and refer the reader to Section 2.2.1 for
additional detail.

b̄e =
∑
e∈E

∑
s∈V

∑
t∈V
s 6=t

ns,t(e)

ns,t
(2.6)

Similar to b̄v, average edge betweenness can be represented as a linear function of the
average distance d̄,

b̄e =
n(n− 1)

2m
d̄ (2.7)

implying that some of the robustness properties for d̄ will hold for b̄e as well. The time
complexity for average edge betweenness is also O(n2m).

Robustness link. Average edge betweenness has similar robustness properties to average
vertex betweenness. The smaller the average the more robust the network, since load is
more evenly distributed across each edge.

Global Clustering Coefficient (C)

The global clustering coefficient C is based on the number of triplets of nodes in the graph,
and provides an indication of how well nodes tend to cluster together. By definition, a triplet

26

is three nodes connected by either two edges (open triplet) or three edges (closed triplet);
where a closed triplet is called a triangle. Each triangle contains three closed triplets, one
centered on each node. In order to measure the global clustering coefficient, we count the
number of closed triplets (or 3x the number of triangles) and divide it by the total number
of both closed and open triplets, as in Equation 2.8.

C =
closed triplets

closed triplets + open triplets
(2.8)

Alternatively, we can view the global clustering coefficient as the average possible frac-
tion of interconnections among each node v ∈ G as in Equation 2.9

C =
1

n

∑
n∈V

2 ·Nv

δv(δv − 1)
(2.9)

where Nv is the number of edges between neighbors of v, and δv is the degree of node v.
The time complexity for computing the global clustering coefficient is O(n · d2max), where
d2max is the size of the largest adjacency list across all vertices in the graph [122].

Robustness link. A larger global clustering coefficient implies a more robust network since
the number of triangles in the graph corresponds to the number of available communication
paths.

Largest Connected Component (L)

This measure provides an indication of a graph’s connectivity by measuring the fraction of
nodes contained in the largest connected component. This is calculated by determining the
maximal set of vertices S ⊂ V such that for each u ∈ S and v ∈ S, there exits a path from
u to v in G. Intuitively, L provides a measure of network availability i.e., what percentage
of the nodes can be reached, and is measured as shown in Equation 2.10.

L =
|{d(u, v) 6=∞ | unordered pair(u, v) ∈ G}|

n
(2.10)

The time complexity to find the largest connected component is O(n+m), since each BFS
(or DFS) call takes linear time in the number of edges and vertices for each component;
and since each component is only searched once, all searches are linear in the number of
edges and vertices.

Robustness link. This is useful as a measurement of robustness since as the number of
removed nodes and edges increases, there reaches a critical fraction where the network
connectivity begins to collapse; which can be measured through the size of the largest

27

connected component.

2.2.2 Measures Based on Adjacency Matrix Spectrum

The adjacency matrix A is a common network representation, often used when enumer-
ate walks [123]. Formally, we say that A(G) is the adjacency matrix of G, where A ∈
{0, 1}n×n and Ai,j = Aj,i = 1 if vertex vi and vj are adjacent and Ai,j = Aj,i = 0 other-
wise. This can be seen in Equation 2.11.

Aij =

1, if i is adjacency to j

0, otherwise
(2.11)

It follows that A(G) is a real symmetric matrix with real eigenvalues λ1 ≥ λ2 ≥ ... ≥
λn. The set of eigenvalues {λ1, λ2, ...λn} is called the spectrum of A, with corresponding
eigenvectors u1,u2, ...,un. Several robustness measures have been based on the spectrum
of the adjacency matrix; we address five of the most common ones below.

Spectral Radius (ρ)

The largest eigenvalue λ1 of an adjacency matrix A is called the spectral radius ρ. The
spectral radius is closely related to the path capacity or loop capacity of the graph. That is,
the number of walks of length k (k = 2, 3, 4...) gives an indication of how well connected
the graph is. If the graph has many loops and paths, then the graph is well connected i.e.,
larger λ1 [5, 123, 77]. It has been shown in [124] that the spectral radius is also closely
tied to the epidemic threshold τ of a network in the flu-like SIS (susceptible-infected-
susceptible) model. In particular, they prove that β

δ
< τ = 1

λ1
, where β is the birth rate of

a virus or disease and δ is the cure rate. This means for a given virus strength, an epidemic
is more likely to occur on a graph with larger λ1. While this seems contradictory at first
glance, increased vulnerability to virus propagation actually implies a graph is more robust
to natural failures and targeted attacks. The time complexity for computing the spectral
radius is O(m), since computing the first eigenpair in sparse matrix form is linear with
respect to the number of edges [49].

Robustness link. As a robustness measure, a larger λ1 indicates a more robust graph to
random failures and attack, along with increased susceptibility to virus propagation [70, 5,
49, 89, 96, 26]. This is because the backup paths and redundancy in a network are the same
mechanisms that allow a virus to quickly propagate.

28

Spectral Gap (λd)

The difference between the largest and second largest eigenvalues of the adjacency matrix
(λ1 − λ2) is called the spectral gap λd. As a robustness measure, the spectral gap is a
simple way to estimate the robustness of a graph—if the spectral gap is large, the graph
shows good robustness; if it is small, the robustness is poor [26, 74]. This is because a
large spectral gap is indicative of a network with good expansibility properties, while a
small spectral gap indicates a network with bottlenecks and bridges [57]. This ability to
communicate the existence of bridges in the graph is a unique property of the spectral gap,
and not found in the spectral radius. The time complexity to compute the spectral gap is
O(m+ n) [125].

Robustness link. A unique link between the spectral gap and network robustness is the
ability to identify bridges and bottlenecks in the graph [57]. Unfortunately, it is not evident
how large the spectral gap needs to be for a graph to be characterized as robust [74].

Natural Connectivity (λ̄)

Natural connectivity can be interpreted as the “average eigenvalue” of the adjacency matrix
λ̄ [103], and is defined in Equation 2.12.

λ̄(G) = ln(
1

n

n∑
i=1

eλi) (2.12)

Natural connectivity has a physical and structural interpretation that is tied to the connec-
tivity properties of a network. It is often used to measure the availability of alternative path-
ways in a network, through the weighted number of closed walks [47]. A walk of length
k in a graph is defined as an alternating sequence of vertices and edges v0e1v1e2...ekvk,
where vi ∈ V and ei = (vi−1, vi) ∈ E. A walk is said to be closed if v0 = vk. Closed walks
are closely related to the natural connectivity and subgraph centrality (SC), which we can
relate through Equation 2.13.

SC(G) =
n∑
i=i

SC(i) =
n∑
i=1

inf∑
k=0

(Ak)ii
k!

=
n∑
i=1

inf∑
k=0

λki
k!

=
n∑
i=1

eλi (2.13)

Here (Ak)ii is the number of closed walks of length k on node i, where k! scales the
weighted sum so that it does not diverge and longer walks are counted less [126, 103, 47].
We further explore the relationship between subgraph centrality and robustness in Sec-
tions 2.2.2 and 2.2.2. For now, we rewrite Equation 2.13 in relation to natural connectivity

29

as shown in Equation 2.14.

λ̄(G) = ln(
1

n

n∑
i=1

eλi) = ln(
1

n
SC(G)) (2.14)

Natural connectivity has a time complexity of O(n3) since it computes the full spectrum of
the adjacency matrix [80].

Robustness link. Natural connectivity has a close relation to network topology and dynam-
ical processes on the graph [47]. This can be seen by its close connection to the number of
closed walks, which naturally captures the notion of network connectivity and alternative
pathways in a network. A larger λ̄ indicates a more robust graph.

Spectral Scaling (ξ)

When a network is both sparse and highly connected it is said to have “good expansion”
(GE), also known as an expander graph or a “good expansion network” (GEN) [127, 57].
Intuitively, we can think of an expander graph as a network lacking bridges or bottlenecks,
making it hard to disconnect through the removal of a few nodes or edges. GE is closely
related to the spectral gap λd of a network, and can be used to identify the GE property if
λd is sufficiently large (i.e., λ1 � λ2) [57]. The question is, how large should the spectral
gap be in order for a network to be considered a GEN?

Estrada [57] proposes to solve this problem by combining the spectral gap with sub-

graph centrality (SC). In particular, they propose to use odd subgraph centrality SCodd
to measure the number of odd length closed walks that a node participates in. This helps
to avoid trivial closed walks (i.e., paths) occurring from even length closed walks SCeven.
Rewriting Equation 2.13, we can view SC in terms of it’s even and odd components [128]:

SC(i) =
n∑
j=1

uj(i)
2cosh(λj)+

n∑
j=1

uj(i)
2sinh(λj)

= SCeven(i)+SCodd(i)

(2.15)

Expanding SCodd into two components based on the first and subsequent eigenvalues:

SCodd(i) = [u1(i)]
2sinh(λ1) +

∑
j=2

[uj(i)]
2sinh(λj) (2.16)

30

Since we know that networks with good expansibility have λ1 � λ2, we can say that:

[u(i)]2sinh(λ1)�
∑
j=2

[uj(i)]
2sinh(λj) (2.17)

and therefore rewrite Equation 2.16 using the inequality from Equation 2.17 as follows:

SCodd(i) ≈ [u1(i)]
2sinh(λ1) (2.18)

From Equation 2.18 we observe that the subgraph centrality is proportional to the first
eigenvector u1, yielding the following equation:

u1(i) ∝ A[SCodd(i)]
η (2.19)

where A = [sinh(λ1)]
−0.5 and η ≈ 0.5 This implies a linear correlation between u1(i)

and SCodd(i) for networks with good expansion. In a log-log scale Equation 2.19 can be
rewritten as:

log[ui(i)] = logA+ ηlog[SCodd(i)] (2.20)

As a result, a log-log plot of u1(i) vs. SCodd(i) shows a linear fit with slope η ≈ 0.5 with
an intercept of log[A] if the network has GE. In order to quantify this into a robustness
measure, [57] proposes the formula for spectral scaling in Equation 2.21.

ξ(G) =

√√√√ 1

n

n∑
i=1

{log[u1(i)]− [logA+ ηlog[SCodd(i)]]}2 (2.21)

We note that spectral scaling calculates SCodd(i) using the full spectrum of the adjacency
matrix, not just the first eigenpair. As such, the time complexity is O(n3) due to the com-
putation of the full adjacency matrix spectrum [129].

Robustness link. As a robustness measure, the closer the value of ξ to zero, the better
the expansion properties and the more robust the network. Formally, a network is consid-
ered to have GE if ξ < 10−2, the correlation coefficient r < 0.999 and the slope is 0.5.
While this method improves upon the spectral gap, it still suffers from a few shortcom-
ings, including—(i) not scalable to large graphs due to computing the full adjacency matrix
spectrum; and (ii) not applicable to bipartite graphs which do not contain odd length closed
walks.

31

Generalized Robustness Index (rk)

This measure is a fast approximation of spectral scaling, which includes only the top k
eigenpairs in the subgraph centrality calculation, since only the first few eigenvalues are
large, with most of the eigenvalues symmetric around zero. In many real world graphs
k � n, and therefore, k can be considered a low-rank approximation of the adjacency
matrix A [74]. This allows us to compute only a few eigenpairs of A while capturing a
majority of the spectrum information; making the measure scalable to large graphs. This
process can be seen in Equation 2.22, where the modified subgraph centrality is referred to
as normalized subgraph centrality (NSC).

NSCk(i) =
k∑
j=1

sinh(λj), ∀i ∈ V (2.22)

Based on the normalized subgraph centrality NSCk, [74] proposes the generalized robust-

ness index rk:

rk =

√√√√ 1

n

n∑
i=1

{log[u1(i)]− [logA+
1

2
log[NSCk(i)]]}2 (2.23)

where A = [sinh(λ1)]
−0.5. In practice, k can be extremely small while still achieving high

accuracy (k ≤ 30) [74]. This reduces the time complexity of spectral scaling to either
O(kn2)[129] or (mk + nk2) [125] depending on the implementation.

Robustness link. As a robustness measure, a smaller rk implies better robustness. Asides
from the computational benefit of the low rank approximation, this measure is very similar
to spectral scaling. We refer the reader to Section 2.2.2 for additional information.

2.2.3 Measures Based on Laplacian Matrix Spectrum

The Laplacian matrix L is often used when a problem can be related to spanning trees or
the incidence of vertices and edges [123]. Formally, we say that L(G) is the Laplacian
matrix of G, where L = D − A and D is the diagonal matrix with the degree on the
diagonals. It follows that Li,j = di if i = j; Li,j = −1 if i is adjacent to j; and Li,j = 0

otherwise; where di is the degree of node i. This can be seen in Equation 2.24.

Lij =

di, if i = j

−1, if i is adjacency to j

0, otherwise

(2.24)

32

Since D and A are both symmetric and have real eigenvalues and an orthonormal basis of
eigenvectors, the Laplacian matrix is positive semi-definite with nonnegative eigenvalues;
with the smallest eigenvalue always being 0. Hence we order the eigenvalues as follows 0

= µ1 ≤ µ2 ≤ ... ≤ µn, where the set of eigenvalues {µ1, µ2, ...µn} is called the spectrum
of L. Several robustness measures have been based on the spectra of the Laplacian matrix;
we address 3 of the most prominent ones below.

Algebraic Connectivity (µ2)

The second smallest eigenvalue of the Laplacian is called the algebraic connectivity µ2, also
known as the Fiedler vector [130]. Since the Laplacian is symmetric, positive semi-definite
and the rows sum up to 0, the eigenvalues are real and non-negative, with the smallest
eigenvalue being zero; and the multiplicity of the zero eigenvalue related to the number of
connected components. For a disconnected graph, this means the algebraic connectivity is
always zero. The time complexity to compute the algebraic connectivity is O(m+n) [131]

Robustness link. The larger the algebraic connectivity µ2 the more robust the graph. This
can be understood from its relationship to the characteristic path length of a network; and
from its connection to node connectivity κv and edge connectivity κe of a graph, where
µ2 serves as a lower bound 0 ≤ µ2 ≤ κv ≤ κe ≤ dmin. This means that a network with
larger algebraic connectivity is harder to disconnect (i.e., more edges, nodes need to be
removed) [26].

Number of Spanning Trees (T)

A spanning tree is a subgraph of G containing n nodes, n-1 edges and no cycles. We can
visualize this as a graph connecting all the vertices with the minimum possible number of
edges. The number of spanning trees T is the number of unique spanning trees that can be
found in a graph. This measure was originally suggested as an indicator of a graph’s ability
to stay connected [132]; where Baras and Hovareshti expanded upon it as an indicator of
network robustness [35]. As a consequence of the Kirchoff’s matrix-tree theorem [133],
the number of spanning trees T can be written as a function of the Laplacian eigenvalues
as shown in Equation 2.25.

T =
1

n

n∏
i=2

µi (2.25)

The time complexity for this measure is O(n3) due to the computation of the full Laplacian
spectrum [134].

33

Robustness link. The larger the number of spanning trees the more robust the graph. This
can be viewed from the perspective of network connectivity, where a larger set of spanning
trees provides a measure of alternative pathways. Unfortunately this measure does not work
for disconnected graphs since a spanning tree must include all vertices by definition.

Effective Resistance (R)

This measure views a graph as an electrical circuit where an edge (i, j) corresponds to a
resister of rij = 1 Ohm and a node i corresponds to a junction. As such, the effective resis-
tance between two vertices i and j, denotedRij , is the electrical resistance measured across
nodes i and j when calculated using Kirchoff’s circuit laws. Extending this measure to the
whole graph, we say the effective graph resistance R is the sum of resistances for all dis-
tinct pairs of vertices [25, 62]. Klein and Randic proved this can be can be calculated based
on the sum of the inverse non-zero Laplacian eigenvalues [22] as shown in Equation 2.26

R =
1

2

n∑
i,j

Rij = n
n∑
i=2

1

µi
(2.26)

In addition, it has been shown that the effective resistance can be bounded by the algebraic
connectivity [56] as shown in Equation 2.27

n

µ2

< R ≤ n(n− 1)

µ2

(2.27)

The effective resistance has time complexityO(n3) due to computation of the full Laplacian
spectrum.

Robustness link. As a robustness measure, effective resistance measures how well con-
nected a network is, where a smaller value indicates a more robust network [62, 25]. In
addition, the effective resistance has many desirable properties, including the fact that it
strictly decreases when adding edges [56], and takes into account both the number of paths
between node pairs and their length.

2.2.4 Comparing Robustness Measures

In Table 2.4, we highlight each robustness measure, the category it belongs to (graph, adja-
cency, Laplacian), and its application to network robustness. By distilling all of this mea-
sure information into a single table, users can easily compare robustness measures. This
greatly assists in selecting robustness measures across domain specific criteria, where the
user may have an idea of what the robustness measure needs to incorporate. For example,

34

Robustness Measure Category Application to Network Robustness

Vertex connectivity graph higher value ⇒ harder to disconnect graph ⇒ higher robustness

Edge connectivity graph higher value ⇒ harder to disconnect graph ⇒ higher robustness

Diameter graph lower value ⇒ stronger connectivity ⇒ higher robustness

Average distance graph lower value ⇒ stronger connectivity ⇒ higher robustness

Average inverse distance graph higher value ⇒ stronger connectivity ⇒ higher robustness

Average vertex betweenness graph lower value ⇒ more evenly distributed load ⇒ higher robustness

Average edge betweenness graph lower value ⇒ more evenly distributed load ⇒ higher robustness

Global clustering coefficient graph higher value ⇒ more triangles ⇒ higher robustness

Largest connected component graph higher value ⇒ better connected graph ⇒ higher robustness

Spectral radius adjacency larger value ⇒ stronger connectivity ⇒ higher robustness

Spectral gap adjacency higher value ⇒ fewer bottlenecks ⇒ higher robustness

Natural connectivity adjacency higher value ⇒ more alternative pathways ⇒ higher robustness

Spectral scaling adjacency lower value ⇒ fewer bottlenecks ⇒ higher robustness

Generalized robustness index adjacency lower value ⇒ fewer bottlenecks ⇒ higher robustness

Algebraic connectivity laplacian higher value ⇒ harder to disconnect ⇒ higher robustness

Number of spanning trees laplacian higher value ⇒ more alternative pathways ⇒ higher robustness

Effective resistance laplacian lower value ⇒ more alternative pathways ⇒ higher robustness

Table 2.4: Comparison of robustness measures. Measures are grouped based on whether they use
the graph, adjacency or Laplacian matrix. For each measure, we briefly describe it’s application to
measuring network robustness.

users working with critical infrastructure systems wants to select a robustness measure that
takes into account backup pathways, this information is now readily available, along with
how to interpret the measure (e.g., lower is better).

2.2.5 Selecting a Robustness Measure

In this section we explore which robustness metrics may be well suited to particular types of
network data through an analysis of two high impact use case scenarios—(i) transportation
networks and (2) water distribution networks. We begin by exploring the domain specific
robustness problems in each use case scenario, and identify important network properties.
Studying these network properties in conjunction with the current methods of robustness
analysis for the domain, we highlight alternative robustness measures (based on Table 2.4)
that have potential to improve performance for the task at hand. Through this process we
take a first step in addressing how to select a robustness measure by providing a template
for future domain specific network robustness analysis.

Scenario 1: Transportation Networks. Societal dependence on transportation networks
(e.g., roadway) is enormous, and only increasing in number and complexity. Unfortunately,

35

these networks are often purposefully designed to operate with minimal redundancy and
high capacity in order to minimize costs. As a result, they are extremely sensitive to failures
and disruptions [76]. As such, understanding and studying the vulnerability and robustness
of these networks is critical.

While there is currently no definitive definition of transport system vulnerability [76],
a well received and representative one is suggested by Berdica [36]: “Vulnerability in the

road transportation system is a susceptibility to incidents that can result in considerable re-

ductions in road network serviceability”. In order to understand the nature and extent of the
vulnerability posed to transportation networks, graph theoretic measures have evolved as a
natural tool of representation. In the study of transportation systems it has been suggested
robustness measures take into account factors like:

(i) average distance between different stops [76]

(ii) alternative pathways of transport [54]

(iii) bottlenecks inside and between communities [55]

Currently, highly interpretable network analysis tools such as average distance, be-
tweenness centrality, clustering coefficient and largest connected component are proposed
as measures of system robustness [55, 76]. From a decision making perspective, these
measures are highly interpretable helping inform decision making policy.

Potential Alternatives. Traditional robustness analysis applied to transportation networks
could benefit from the use of spectral based techniques, which are scalable to large net-
works and could potentially provide better performance. In this domain we identified al-
ternative pathways (i.e. redundancy) and bottlenecks as important criteria in robustness
measure selection. Therefore the spectral gap which accounts for bottlenecks, and effec-

tive resistance which takes into account alternative pathways and their length, may be two
important measures for robustness analysis.

Scenario 2: Water Distribution Networks. Cities and municipalities depend on a mix-
ture of complex and interconnected infrastructure to provide a reliable and safe source of
water to consumers. A serious concern for the water utilities providing this service is the
vulnerability of water distribution networks (WDNs) to common failures (e.g., aging pipes)
and targeted attacks (e.g., disrupted service) [107, 135]. Due to WDNs natural graph repre-
sentation, graph robustness measures have become a critical tool in the analysis of network
vulnerability. In order to address the concern of vulnerability, multiple criteria have been
proposed to evaluate a WDNs robustness:

36

(i) alternative pathways of supply [108]

(ii) bottlenecks or articulation points [80]

(iii) connectedness of the network [80]

(iv) loop redundancy [107]

Interestingly, compared to transportation networks, WDNs currently use a mixture of
graph and spectral approaches to account for these desired properties. Common analysis
tools include average distance, diameter and clustering coefficient [107], which could be
used to identify graph connectedness and loop redundancy. In addition spectral approaches
such as spectral gap and algebraic connectivity have been proposed for use in WDN vul-
nerability analysis. These techniques could be used to identify bottlenecks and measure the
strength of connectivity between subregions [80].

Potential Alternatives. Bottleneck and loop redundancy are important criteria in robust-
ness measure selection. Measures such as the spectral gap and algebraic currently can ac-
count for bottlenecks; while tools like average distance, diameter and clustering coefficient
provide a measure of alternative pathways and loop redundancy. However in this case,
natural connectivity which is intrinsically tied to loop capacity and alternative pathways
presents a compelling robustness measure. In addition, effective resistance which takes
into account alternative pathways and their length could be a strong alternative measure.

2.3 Failures and Targeted Attacks

To understand the underlying mechanisms of network failure and attack, we need to ex-
amine the graph properties facilitating these issues. In order to do this, we begin with a
brief overview of four classical graph models in Section 2.3.1. This background knowl-
edge on graph models assists in the analysis of network failure and attack in Section 2.3.2
and Section 2.3.3, respectively.

2.3.1 Graph Models

We analyze the properties of graph models since they have been extensively studied and
contain well defined properties. In addition, through understanding the robustness of these
graph models, which are representative of many real-world datasets, we can use the knowl-
edge gained here and apply it to any type of graph data.

Erdös-Rényi (ER) Model [136] The ER model generates random networks with no par-
ticular structural bias, where each graph starts with n vertices and no edges. For each pair

37

of nodes, an edge is added to the graph with probability p. This leads to the Poisson-type
degree distribution where the probability of a vertex having degree k is pk = p(n−1) [137].
In addition, the ER model has a logarithmically increasing average distance and a cluster-
ing coefficient close to zero [63]. Potentially the most important property of Erdös-Rényi
graphs in relation to network robustness is the homogeneity of the degree and betweenness
distributions. This property of homogeneity implies that node importance and network load
are evenly distributed among the nodes in the graph [105]. As we will see in the following
sections, this is a particularly valuable property.

Watts-Strogatz (WS) Model [102] The WS model generates graphs with high clustering
coefficient and low diameter (small-world property). The model starts starts by generating
a ring lattice with n vertices, where every node is connected to its k nearest neighbors. Each
edge is then visited once and rewired with probability p to a vertex chosen uniformly at ran-
dom (no duplicate edges or self-loops allowed). This has the effect of creating “shortcuts”
across the graph, creating the low diameter, small-world property.

As such, the WS model shows a heterogeneous betweenness distribution where a small
number of nodes have very large betweenness while most nodes contain very little (not
a power law distribution though). However, the WS model does manage to maintain a
homogeneous degree distribution due the small number of edges rewired [105].

Barbási-Albert (BA) Scale-Free Model [138] The BA model generates network topology
according to two processes—growth and preferential attachment. Where prior network
models kept the number of nodes fixed during the network formation process, the BA
model starts with a small set of vertices and grows the network by adding nodes and edges
over time. The reason why the BA model follows the sociological principle of the “rich
get richer”, where the probability of connecting to a node is proportional to the degree of
that node, is due to preferential attachment mechanism [137]. The BA model generates
scale-free networks following a power law degree distribution given by pk ≈ k−3 with
average geodesic distance increasing logarithmically with the size of n, demonstrating the
small-world property [63]. As such, the BA model shows both a heterogeneous degree and
betweenness distribution, where a small number of nodes account for large proportion of
the betweenness load and degree [105].

Clustered Scale-Free (CSF) Model [139] The CSF model extends the BA model by in-
corporating a high clustering coefficient through a single step after preferential attachment,
called triad formation. The advantage of the CSF model compared to the BA model is that
it generates graphs with high clustering coefficient while maintaining the scale-free and
small average distance properties. As such, the degree distribution of the CSF model is

38

heterogeneous and roughly equivalent to the BA model [139].

2.3.2 Isolated & Cascading Failures

These types of failures in a network often occur when a piece of equipment breaks down
due to natural causes. In the study of graphs, this could correspond to the removal of either a
node or an edge. While random and cascading failures do occur, they are often less severe
than targeted attacks. In fact, [105] shows that cascading failures are significantly less
impactful than targeted attacks across a range of graph models—ER, WS and BA. For both
the ER and BA graphs, the network damage from cascading failures is minimal. While the
WS model suffered significant damage from the cascading failure, it was still significantly
less than the targeted attack. As a whole, this indicates that isolated and cascading failures
are less threatening than targeted attacks. As such, we focus the majority of our attention
to targeted attacks.

2.3.3 Targeted Attacks

There are only two ways an adversary can attack a network—removal of nodes or removal

of edges. The goal of the attacker is select nodes and edges considered important to the
functionality of the network (e.g., critical power substations or electrical lines). To accom-
plish this, an attacker typically relies on measures of node and edge centrality. While any
centrality measure can be used to generate a list of the top k nodes and edges to remove,
we focus on two traditional measures—degree and betweenness centrality. Through these
two measure, there are four common attack strategies: initial degree removal (ID), initial
betweenness removal (IB), recalculated degree distribution removal (RD) and recalculated
betweenness removal (RB) [63]. Each of these attack strategies are discussed below.

Initial Degree Removal (ID) In this attack scenario each node v in the network is ranked
according to its degree δv. For a given budget k, an attacker removes vertices one by one
starting with the highest degree nodes. This has the effect of reducing the total number
of edges in the network as fast as possible [63]. Since this attack only considers its’ local
neighborhood when making a decision, it is considered a local attack. The benefit of this
locality is that the attack strategy is quick to compute; linear in the size of nodes in the
graph. The same strategy can be applied to the removal of edges from the network, where
edge degree δe can be defined in several ways. Four common ones are shown below [63]:

39

δe = δu · δv (2.28a)

δe = δu + δv (2.28b)

δe = min(δu, δv) (2.28c)

δe = max(δu, δv) (2.28d)

In practice, Equation 2.28 (a) has been shown to be the most effective method of defining
edge degree in relation to attack strategy, since it correlates best with betweenness central-
ity [63].

Initial betweenness Removal (IB) This attack ranks each node v ∈ V according to its
betweenness centrality bv in Equation 2.4. The attacker then removes up to k nodes, one
at a time in descending order of importance. This has the effect of destroying as many
paths as possible [63]. Since this attack considers information from across the network,
it is considered a global attack strategy. As a result, the IB attack strategy is significantly
more computationally expensive than ID (see Section 2.2.1). The same attack strategy can
be applied to the removal of edges using the definition of edge betweenness centrality:

Recalculated Degree Removal (RD) Recalculated degree removal follows the same steps
as ID, except that it recalculates the degree distribution of nodes after removing each vertex.
This allows for the attacker to re-assess the target after each round of attack. The same
process holds for removing edges.

Recalculated betweenness Removal (RB) Recalculated betweenness removal follows the
same steps as IB, except that it recalculates the betweenness centrality of each node after a
link is removed. The same process holds for removing edges.

Comparison of Targeted Attacks

The efficacy of each attack outlined in Section 2.3.3 is discussed in relation to two robust-
ness measures: size of the largest connected component (L) and average inverse distance
d̄−1, on four classic graph models—(1) Erdös-Rényi (ER), (2) Watts-Strogatz (WS), (3)
Barbási-Albert (BA) scale-free and (4) Clustered Scale-Free Model (CSF). In each section
below, we review the efficacy of attacks on each type of graph.

Attacking Erdös-Rényi Graphs. The most effective node attack strategy on ER graphs is
RD. However, it takes the removal of∼30% of the most central nodes in the graph in order
to reduce the d̄−1 by 50%; and the removal of ∼40% of the central nodes to decrease L

40

by 50% [63]. This is a large fraction of the nodes to be removed, indicating that ER graph
are highly robust to targeted attacks. This robustness of Erdös-Rényi graphs stem from
the homogeneous degree and betweenness distributions. Since these distributions evenly
spread the load and importance among each of the nodes. Therefore if a few nodes are
attacked, no serious network damage occurs [105].

The ER model is also robust to edge based attacks. The most effective attack strategy
is again RB, where approximately 40% of the edges have to be removed in order to drop
the average inverse distance by 50%. To reach a similar performance drop in the largest
connected component, approximately 50% of the edges needed to be removed by the most
effective edge attack strategy RD [63].

Attacking Watts-Strogatz Graphs. The attack behavior on WS graphs is significantly
different from ER graphs. For just a small number of removed vertices, the RB procedure
completely breaks down the structure of the graph. By removing just ∼2% of the most
central nodes, d̄−1 is reduced by 45%. After removing roughly 10% of the top nodes, the
network structure completely breaks down resulting in a 95% decrease in d̄−1 and an 85%
decrease in L [63].

However, results from [63] show that degree based strategies are largely ineffective in
attacking WS graphs. This largely stem from the fact that WS networks have a hetero-
geneous betweenness distribution and a homogeneous degree distribution. Since the RB
attack targets central nodes carrying a majority of the load, the graph rapidly disintegrates.
On the other hand, targeting nodes based on degree distribution is not as effective since
most nodes have roughly the same degree [105].

Evaluating the robustness of WS graphs under edge attacks results in similar perfor-
mance degradation compared to node based ones. Again, the RB attack effectively de-
constructs the graph after the removal of only 20% of the edges, reducing L to < 5% of
its original value. In addition, the average inverse distance drops to roughly 10% of the
original value at the same mark. The effectiveness of the RB strategy can be tied to the
identification of important edges, which in the WS model are the rewired edges linking the
distant parts of the ring [63].

Attacking Barbási-Albert Scale-Free Graphs. The BA graph is significantly more robust
to node based attacks than the WS model, even though the BA graph has a heterogeneous
degree and betweenness distribution. While this may seem odd at first, it likely stems from
the fact that the WS model is based on a ring structure with mostly local connections.
Therefore, removal of even a single node significantly affects the neighborhood [105].
Compared to the ER model, the BA graph suffers significantly from both RB and RD
attacks due to the heterogeneous nature of the degree and betweenness distribution.

41

Edge based attacks on the BA model perform poorly compared to their node based
counterparts. It takes a removal of 40% of the edges in order to drop the performance of
d̄−1 by 50%. In comparison, it would have only the removal of∼12% of the nodes to reach
the same level of performance drop. Similar results are found when comparing the largest
connected component performance across node and edge attacks [63]. One potential reason
for this significant difference could arise from the combination of the homogeneous nature
of the betweenness distribution and the hub-like structure of important vertices.

Attacking Clustered Scale-Free Graphs. The CSF model is an extension of BA with the
addition of a triad step, allowing the model to generate graphs with a higher clustering co-
efficient. However, it turns out that this clustering step introduces significant vulnerability
into the network. This vulnerability is likely caused by the targeting of important vertices
with many triads attached to it [63]. To put it in comparison, removing just 10% of the
central nodes from the CSF graph results in both L and d̄−1 dropping by 90%. In compar-
ison, the BA graph which is widely known to be vulnerable to targeted attacks, only drops
roughly 50% in L and 10% in d̄−1 with the same number of nodes removed [63].

Similar to the BA graph, the CSF graph seem to be much more resilient to edge based
attacks than node based ones [63]. However, it is still significantly more vulnerable to RD
based edge attacks than the BA model.

2.3.4 Comparison to Other Targeted Attacks

While we have studied two types of centrality based attacks on networks—node central-
ity and betweenness centrality—there exists a number of alternative options [34]. Some
of these alternatives include: PageRank [140], closeness centrality [141], eigenvector cen-
trality and Katz centrality [142]. However, it has been shown that many of these cen-
trality scores produce highly correlated results when conducting targeted attacks on net-
works [34]. The three most common groupings of centrality measures according to sim-
ilarity are as follows: (PageRank, betweenness centrality), (Katz centrality, eigenvector
centrality) and (closeness centrality, degree centrality). As such, attack related studies may
want to consider evaluating attacks from distinct groups in order to avoid similar attack
patterns.

2.4 Network Defense

To understand the best mechanism of defense for a particular network, it is important to
understand the properties of the graph and the type of attack or failure we are expecting

42

to protect against. In Section 2.4.1 we overview measure independent heuristics for im-
proving network defense, grouping each technique into one of three categories depending
on whether it improves network robustness through (i) edge addition, (ii) edge rewiring, or
(iii) identifies important nodes and edges in a network to monitor suspicious activity. Then
in Section 2.4.2 we analyze optimization based techniques for network defense according
to the same categorization process as above. Finally, in Section 2.4.3 we discuss when to
apply different defense techniques.

2.4.1 Measure Independent Heuristics

In this section we evaluate network defenses that are heuristic in nature. This means that
the technique modifies the graph structure independent of a robustness measure [26].

Edge Addition

Edge additions typically incur additional network costs then edge rewiring, however, they
almost always provide better results. In [23], they show that edge addition outperforms
all proposed edge rewiring schemes on two measures of network robustness L and d̄−1. In
addition, they find that not all edge addition techniques are equal, and that preferential edge
addition outperforms random edge addition.

Edge Rewiring

Edge rewiring is a popular technique to improve network robustness since it generally has a
lower cost associated with it compared to adding edges. As such, we study the six methods
of edge rewiring proposed in [23]:

(1) Random addition: add an edge connecting two random nodes

(2) Preferential addition: add an edge by connecting two nodes having the lowest de-
grees

(3) Random edge rewiring: remove a random edge, then add an edge as in (1)

(4) Random neighbor rewiring: randomly select a node, and then a random neighbor of
that node, then remove the corresponding edge. Next add an edge as in (1)

(5) Preferential rewiring: disconnect a random edge from the highest-degree node and
reconnect that edge to a random node

(6) Preferential random edge rewiring: choose a random edge, disconnect it from the
higher degree node, then connect that edge to a random node

43

In order to evaluate the effectiveness of each proposed rewiring scheme, [23] proposes
to measure network robustness through the average inverse distance d̄−1 and largest con-
nected component L on three increasing levels of node attack. With respect to robustness
measure L, the conclusion that was drawn is that edge rewiring is most effective in the
following order: 5 > (3 and 6) > 4. Each number corresponds to the list above. On
the other hand when using d̄−1 is used as the metric, preferential rewiring (6) is found to
increase d̄−1 the most for small amounts of rewiring, while random edge (3) and random
neighbor (4) techniques give the largest d̄−1 improvement when large numbers of edges
were rewired [23].

Node Monitoring

Many of the centrality based techniques that are used to attack a network can be used to
defend it. In fact, if you know that an adversary is using one of these approaches to attack
your network, you can monitor the same nodes in advance. To this end, a range of centrality
measures can be used for node monitoring, including: degree centrality, betweenness cen-
trality, PageRank, closeness centrality, eigenvector centrality, Katz centrality, etc. While
picking the appropriate measure to monitor your network might seem overwhelming, it has
been shown that a high degree of correlation exists between many of these measures. The
three most common groupings of centrality measures are: (PageRank, betweeness central-
ity), (Katz centrality, eigenvector centrality) and (closeness, degree) [34]. This can help
reduce the burden of selecting centrality measures for defense by eliminating redundant
and highly correlated measures.

2.4.2 Optimization Based Techniques

The focus of optimization based methods is to modify the underlying graph structure
through the manipulation of a targeted robustness measure [26].

Edge Rewiring

For this section, we focus our attention to the optimization based method for edge rewiring
proposed in [26]. In this work, they propose an algorithm EDGEREWIRE that maximizes
a particular spectral robustness measure according to a given budget. In addition, they
only allow modifications based on degree-preserving edge rewirings in order to ensure that
load on nodes remains unchanged. In total, they allow EDGEREWIRE to operate on six
spectral measures, including: spectral radius, spectral gap, natural connectivity, algebraic
connectivity, effective resistance and number of spanning trees.

44

Comparing EDGEREWIRE to a series of heuristic based edge rewiring approaches on
14 datasets, they find that the proposed method significantly outperforms heuristic based
approaches when measuring for the optimized spectral parameter.

Node Monitoring

We focus our study of optimization based node monitoring techniques to the work con-
ducted by Tong et. al. [5]. In this work, they propose a three step process for network
defense against virus propagation—(i) evaluation of a graphs’ vulnerability to virus prop-
agation via the spectral radius; (ii) design of the ‘Shield-value’ measure to quantify the
importance of a set of nodes in protecting the graph; and (iii) development of a quick al-
gorithm utilizing the Shield-value measure to determine the k best nodes to protect the
graph.

The spectral radius λ1 was chosen as a natural measure of graph robustness to virus
propagation due to its close link to the epidemiological threshold. As such, in order to
minimize the spread of a virus on a network the goal is to minimize λ1 by selecting the best
set S of k nodes to remove from the graph (i.e., maximize eigendrop). In order to evaluate
the goodness of a node set S for removal, [5] proposes the Shield-value measure:

Sv(S) =
∑
i∈S

2λ1u1(i)
2 −

∑
i,j∈S

A(i, j)u(i)u(j) (2.29)

The intuition behind this equation is that we want to select nodes for removal/monitor-
ing that have high eigenvector centrality (first term) while penalizing nodes for being close
together (second term). In order to select this set of nodes S, they develop the NetShield
algorithm. We refer the reader to [5] for technical details. To evaluate the efficacy of the
node monitoring approach, it is compared across a multitude of heuristic based measures,
including— PageRank, degree centrality, etc.—finding that the NetShield approach to node
monitoring outperforms traditional centrality based approaches in mitigating the spread of
viruses on a network.

2.4.3 Selecting a Defense Method

The most devastating attacks often correspond to targeted attacks, rather than isolated or
cascading failures [105]. As a result, it is common for defense mechanisms to prioritize the
protection of networks from targeted attacks, unless prior information indicates otherwise.
Since an attacker likely targets nodes or edges based on a measure of centrality, we have
information a priori on our adversary. As the defender, we often have knowledge of the

45

graph topology and underlying degree distribution. This allows us to better quantify our
robustness and identify potential points of attack For example, we can measure the number
of bottlenecks present in our network; along with the availability of alternative pathways.
Perhaps most importantly, we can determine the degree and betweenness distribution of the
graph topology, allowing us to make additional assumptions about the best defense strategy.

Since many real world networks assume a heterogeneous degree distribution, where a
few nodes contain many links and many nodes contain only a few links; we use it as an
example network to defend. In this scenario we can: (1) monitor critical nodes according
to different measures of centrality (e.g., nodes with many links); (2) rewire the graph in
an attempt to increase robustness; or (3) add edges to the network in order to increase
robustness. In practice, these decisions often depend on the specific application domain
and the cost of the associated action. However, the most cost effective measure is arguably
node monitoring, which if implemented carefully, can prevent targeted attacks from ever
occurring.

2.5 Research Directions & Open Problems

We present research directions and open problems distilled from the surveyed works. Four
promising directions include: (1) an axiomatic study of desired properties in robustness
measures, helping guide the selection and development of new measures; (2) interpretabil-
ity of robustness measures to assist users in understanding the impact of measure scores;
(3) applying the study of network robustness to additional high-impact domains such as
physical security and cybersecurity; and (4) bridging the study of graph vulnerability and
robustness with recent developments in adversarial machine learning on graph structured
data.

2.5.1 Guidelines for Selecting & Developing Measures

Comparing robustness measures in a quantitative manner is still an open challenge. While
many works have qualitatively remarked on why certain robustness measures are better
suited for certain tasks, there has been no formal study outlining desirable characteristics
that a robustness measure should contain. By formalizing these desirable properties into a
set axioms, future and existing robustness measures could be compared in an independent
and quantitative manner, something that is not currently available. We identified 6 desirable
robustness properties across the literature that could form the basis for an axiomatic anal-
ysis of robustness measures [25, 26, 47]. Below, we provide the intuition for each axiom,
however, each axiom needs to be formalized and (dis)proven for each robustness measure.

46

1. Strictly Monotonic. When an edge is added to a graph the network connectivity is in-
trinsically enhanced. A robustness measure should account for this increased connectivity
by strictly increasing (or decreasing) for each edge added to the graph.

2. Redundancy. A critical ability of any robustness measure is to measure redundancy
present in the network. This means that if multiple paths between two nodes exist, the
proposed measure should be able to account for both the number of paths and their quality
(where smaller paths are better).

3. Disconnected. Many real-world graphs contain disconnected components; therefore
a measure should be able to evaluate a graphs’ robustness independent of the number of
disconnected components.

4. Stable. A robustness measure should change in proportion to the perturbation of the
graph structure. For example, if a single edge is added to a graph, we expect that the
measure has a proportionally small response.

5. Consistent. Given two graphs with same underlying structure, we would expect them
to have similar robustness independent of their size.

6. Scalable. Large graphs containing millions (or sometimes billions) of nodes and edges
are common. A robustness measure should be scalable to large graphs, where we define
scalable as an algorithm subquadratic with respect to the number of nodes and edges.

6. Intuitive. Ideally, we want robustness measures to have identifiable connections to the
underlying graph topology, and for these connections to be conveyable to non-experts in an
understandable manner.

2.5.2 Furthering Interpretability

Ideally, robustness measure should have identifiable connections to the underlying graph
topology to explain what the robustness score is indicative of. Recent research has ex-
plored this in the more general domains of graph connectivity and ranking [143, 144, 145,
146] Combining visual representations, helpful interactions, and state-of-the-art attribution
and feature visualization techniques together into rich user interfaces could lead to major
breakthroughs in understanding graph vulnerability and robustness scores.

2.5.3 Studying Robustness in New Domains

The study of graph vulnerability and robustness is still nascent in the areas of physical se-
curity [44], cybersecurity [59] and interdependent and dynamic networks [147]. For phys-
ical security, [44] studies the vulnerability and robustness of physical sensor placement to

47

maximize perimeter security while minimizing network latency. They find that perimeter
security systems frequently map to circular lattices which suffer from a trade-off between
robustness and mean path length (i.e., latency). Future work could analyze alternative
perimeter system mappings that optimize for both criteria, while exploring alternative def-
initions of robustness in physical security. With respect to cybersecurity, [59] attempts to
calculate the vulnerability and robustness of enterprise networks by modeling lateral attack
movement between computers. However, their unique probabilistic robustness measure
is dependent on cyber domain knowledge and the running of many simulations. Future
cybersecurity robustness analysis could explore the development of robustness measures
that are simulation independent, reducing computational costs and the need for explicit
domain knowledge. Many real-world networks are often dynamic and contain multiple
interdependent sub-networks. While initial work has looked at real-time robustification of
interdependent networks from an edge perspective [147], additional work needs to be done
to (i) study dynamic graphs, (ii) comprehensively evaluate various attack and defense sce-
narios, and (iii) develop unique robustness measures that can better account for the nature
of inter-dependent and dynamic networks.

2.5.4 Bridging Graph Robustness & Adversarial ML

From the machine learning perspective, a majority of current graph robustness research fo-
cuses on manipulating graph classifiers or embedding mechanisms into mispredicting the
label of a graph [148], or the label of each node in the graph [149]. So far, adversarial ma-
chine learning research has yet to deeply delve into the more richly defined network robust-
ness objective centered around a networks’ ability to continue functioning when damaged
or attacked. However, we believe that there are multiple high-impact connections to ex-
plore, including: (1) how does a graph’s spectral robustness (e.g., spectral gap) correlate to
the vulnerability or robustness of downstream tasks such as node and graph classifiers be-
ing attacked; and (2) does optimizing a graph’s spectral robustness (e.g., adding or rewiring
edges) affect an attackers ability to perturb downstream node and graph classification mod-
els. By answering these questions, we can uncover new mechanisms to attack and defend
networks while gaining insight into fundamental connections between two important and
growing fields.

2.6 Conclusion

In this survey, we distill answers to key questions that are currently scattered across multi-
ple scientific fields and numerous papers. In particular, we provide researchers and practi-

48

tioners crucial access to network robustness information information by—(1) summarizing
and comparing 18 recent and classical graph robustness measures; (2) exploring which ro-
bustness measures are most applicable to different categories of network data (e.g., social,
infrastructure); (3) reviewing common network attack strategies, and summarizing which
attacks are most effective across different network topologies; and (4) extensive discus-
sion on selecting defense techniques to mitigate attacks across a variety of networks. We
concluded by highlighting current research directions and open problems. This survey will
serve as a guide to researchers and practitioners in navigating the expansive field of network
robustness, while summarizing answers to key questions.

49

CHAPTER 3
EVALUATING GRAPH VULNERABILITY AND ROBUSTNESS USING TIGER

Network robustness plays a crucial role in our understanding of complex interconnected
systems such as transportation, communication, and computer networks. While signifi-
cant research has been conducted in the area of network robustness, no comprehensive
open-source toolbox currently exists to assist researchers and practitioners in this impor-
tant topic. This lack of available tools hinders reproducibility and examination of exist-
ing work, development of new research, and dissemination of new ideas. We contribute
TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains
22 graph robustness measures with both original and fast approximate versions; 17 fail-
ure and attack strategies; 15 heuristic and optimization-based defense techniques; and 4
simulation tools. By democratizing the tools required to study network robustness, our
goal is to assist researchers and practitioners in analyzing their own networks; and facil-
itate the development of new research in the field. TIGER has been integrated into the
Nvidia Data Science Teaching Kit available to educators across the world; and Georgia
Tech’s Data and Visual Analytics class with over 1,000 students. TIGER is open sourced
at: https://github.com/safreita1/TIGER.

3.1 Introduction

Through analyzing and understanding the robustness of networks we can: (1) quantify
network vulnerability and robustness, (2) augment a network’s structure to resist attacks
and recover from failure, and (3) control the dissemination of entities on the network (e.g.,
viruses, propaganda). Consider the impactful scenario where a virus penetrates one or more
machines in an enterprise network. Once infected, the virus laterally spreads to susceptible
machines in the network, resulting in system-wide failures, data corruption and exfiltration
of trade secrets and intellectual property. This scenario is commonly modeled as a dis-
semination of entities problem using an epidemiological susceptible-infected-susceptible
(SIS) model, where each machine is in either one of two states—infected or susceptible
(see Figure 3.1). How quickly a virus spreads across a network is known as the network’s
vulnerability, and is defined as a measure of susceptibility to the dissemination of entities

across the network [5]. A natural counterpart to network vulnerability is robustness, de-
fined as a measure of a network’s ability to continue functioning when part of the network

is naturally damaged or targeted for attack [25, 26, 23]

50

https://github.com/safreita1/TIGER

Figure 3.1: TIGER provides a number of important tools for graph vulnerability and robustness
research, including graph robustness measures, attack strategies, defense techniques and simulation
models. Here, a TIGER user is visualizing a computer virus simulation that follows the SIS infection
model (effective strength s = 3.21) on the Oregon-1 Autonomous System network [4]. Top: without
any defense, the virus remains endemic. Bottom: defending only 5 nodes with Netshield [5], the
number of infected entities is reduced to nearly zero.

Challenges for robustness and vulnerability research. Network robustness has a rich
and diverse background spanning numerous fields of engineering and science [22, 23, 5,
24, 59]. Unfortunately, this cross-disciplinary nature comes with significant challenges—
resulting in slow dissemination of ideas, leading to missed innovation opportunities. We
believe a unified and easy-to-use software framework is key to standardizing the study of
network robustness, helping accelerate reproducible research and dissemination of ideas.

TIGER design and implementation. We present TIGER, an open-sourced Python Toolbox

for evaluatIng Graph vulnErability and Robustness. Through TIGER, our goal is to cat-
alyze network robustness research, promote reproducibility and amplify the reach of novel
ideas. In designing TIGER, we consider multiple complex implementation decisions, in-
cluding: (1) the criterion for inclusion in the toolbox; (2) identifying and synthesizing a set
of core robustivity features needed by the community; and (3) the design and implemen-
tation of the framework itself. We address the inclusion criterion by conducting a careful
analysis of influential and representative papers (e.g., [26, 5, 74, 63, 23]) across top journals
and conferences from the relevant domains (e.g., ICDM, SDM, Physica A, DMKD, Phys-

51

ical Review E), many of which we will discuss in detail in this chapter. We also include
papers posted on arXiv, as many cutting-edge papers are first released there.

Based on our analysis, we identify and include papers that tackle one or more of the fol-
lowing fundamental tasks [25, 63, 23]: (1) measuring network robustness and vulnerability;
(2) understanding network failure and attack mechanisms; (3) developing defensive tech-
niques; and (4) creating simulation tools to model processes. From these papers, we select
and implement a total of 44 attacks, defenses and robustness measures, along with 4 simula-
tion tools in which they can be used. Due to a vibrant and growing community of users, we
develop TIGER in Python 3, leveraging key libraries, such as NetworkX, SciPy, Numpy and
Matplotlib. While excellent alternative network analysis tools exist [150, 151, 152, 153,
145, 154, 155, 156], many of them are domain specific (e.g., EoN [151], WNTR [153])
or do not provide direct support for network robustness analysis (e.g., NetworkX [150],
Gephi [156]). In contrast, TIGER complements existing tools while providing key missing
network robustness components.

3.1.1 Contributions

1. TIGER. We present TIGER, the first open-sourced Python toolbox for evaluating net-
work vulnerability and robustness of graphs. TIGER contains 22 graph robustness mea-
sures with both original and fast approximate versions when possible; 17 failure and attack
mechanisms; 15 heuristic and optimization based defense techniques; and 4 simulation
tools. TIGER also supports a large number of GPU accelerated robustness measures. To
maintain the integrity of the code base, TIGER uses continuous integration to run a suite
of test cases on every commit. To the best of our knowledge, this makes TIGER the most
comprehensive open-source framework for network robustness analysis to date.

2. Open-Source & Permissive Licensing. Our goal is to democratize the tools needed
to study network robustness; assisting researchers and practitioners in the analysis of their
own networks. As such, we open-source the code on Github and PyPi with an MIT license

available at: https://github.com/safreita1/TIGER.

3. Extensive Documentation & Tutorials. We extensively document the functionality of
TIGER, providing docstrings for each function and class, along with quick examples on how
to use the robustness measures, attacks, defenses, and simulation frameworks. In addition,
we provide 5 detailed tutorials—one for every major component of TIGER’s functionality—
on multiple large-scale, real-world networks, including every figure and plot shown in this
chapter. Users with Python familiarity will be able to readily pick up TIGER for analysis
with their own data.

52

https://github.com/safreita1/TIGER

Number of sampled pairs

Average Vertex Betweenness

0
0

2

4

100 200 300

6

8

0

Number of sampled pairs

Average Edge Betweenness

0

40

80

120

100 200 3000
0

100 200 300

5k

15k

25k

Bottom k-eigenvalues

Effective Resistance

Top k-eigenvalues

Natural Connectivity

0 100 200 3000

1

2

3

4
Number of Spanning Trees

0
10

100 200 300

173

10
177

10
181

10
185

Bottom k-eigenvalues

Ap
pr
ox
im
at
io
n
er
ro
r

Comparing Approximation Error

Figure 3.2: Error of 5 fast, approximate robustness measures supported by TIGER. Parameter k
represents the trade-off between speed (low k) and precision (high k). To measure approximation
efficacy, we vary k ∈ [5, 300] in increments of 10 and measure the error between the approximate
and original measure averaged over 30 runs on a clustered scale-free graph with 300 nodes.

4. Community Impact. TIGER helps enable reproducible research and the timely dis-
semination of new and current ideas in the area of network robustness and vulnerability
analysis. As part of the newly released Nvidia Data Science Teaching Kit, TIGER will be
used by educators and researchers across the world. TIGER has been integrated into the
Nvidia Data Science Teaching Kit available to educators across the world; and Georgia
Tech’s Data and Visual Analytics with over 1,000 students. Since this is a large and highly

active field across many disciplines of science and engineering, we anticipate that TIGER

will have significant impact. As the field grows, we will continue to update TIGER with
new techniques and features.

3.2 TIGER Robustness Measures

TIGER contains 22 robustness measures, grouped into one of three categories depending
on whether the measure utilizes the graph, adjacency, or Laplacian matrix. We present 3
representative robustness measures, one from each of the three categories, to extensively
discuss. For detailed description and discussion of all 22 measures, we refer the reader to
the online documentation.

Terminology and Notation. As the study of graphs has been carried out in a variety of
fields (e.g., mathematics, physics, computer science), the terminology often varies from
field to field. As such, we refer to the following word pairs interchangeably: (network,
graph), (vertex, node), (edge, link). Throughout the chapter, we follow standard practice
and use capital bold letters for matrices (e.g., A), lower-case bold letters for vectors (e.g.,
a). Also, we focus on undirected and unweighted graphs.

53

3.2.1 Example Measures

Average vertex betweenness (b̄v) of a graph G = (V , E) is the summation of vertex be-
tweenness bu for every node u ∈ V , where vertex betweenness for node u is defined as the
number of shortest paths that pass through u out of the total possible shortest paths

b̄v =
∑
u∈V

∑
s∈V

∑
t∈V
s 6=t6=u

ns,t(u)

ns,t
(3.1)

where ns,t(u) is the number of shortest paths between s and t that pass through u and
ns,t is the total number of shortest paths between s and t [120]. Average vertex betweenness
has a natural connection to graph robustness since it measures the average load on vertices
in the network. The smaller the average the more robust the network, since load is more
evenly distributed across nodes.

Spectral scaling (ξ) indicates if a network is simultaneously sparse and highly connected,
known as “good expansion” (GE) [127, 57]. Intuitively, we can think of a network with
GE as a network lacking bridges or bottlenecks. In order to determine if a network has GE,
[57] proposes to combine the spectral gap measure with odd subgraph centrality SCodd,
which measures the number of odd length closed walks a node participates in. Formally,
spectral scaling is described in Equation 3.2,

ξ(G) =

√√√√ 1

n

n∑
i=1

{log[u1(i)]− [logA+
1

2
log[SCodd(i)]]}2 (3.2)

where A = [sinh(λ1)]
−0.5, n is the number of nodes, and u1 is the first eigenvector of

adjacency matrix A. The closer ξ is to zero, the better the expansion properties and the
more robust the network. Formally, a network is considered to have GE if ξ < 10−2, the
correlation coefficient r < 0.999 and the slope is 0.5.

Effective resistance (R) views a graph as an electrical circuit where an edge (i, j) corre-
sponds to a resister of rij = 1 Ohm and a node i corresponds to a junction. As such, the
effective resistance between two vertices i and j, denoted Rij , is the electrical resistance
measured across i and j when calculated using Kirchoff’s circuit laws. Extending this to
the whole graph, we say the effective graph resistance R is the sum of resistances for all
distinct pairs of vertices [25, 62]. Klein and Randic [22] proved this can be calculated
based on the sum of the inverse non-zero Laplacian eigenvalues:

R =
1

2

n∑
i,j

Rij = n
n∑
i=2

1

µi
(3.3)

54

As a robustness measure, effective resistance measures how well connected a network
is, where a smaller value indicates a more robust network [62, 25]. In addition, the effective
resistance has many desirable properties, including the fact that it strictly decreases when
adding edges, and takes into account both the number of paths between node pairs and their
length [56].

3.2.2 Measure Implementation & Evaluation

Our goal for TIGER is to implement each robustness measure in a clear and concise manner
to facilitate code readability, while simultaneously optimizing for execution speed. Each
robustness measure is wrapped in a function that abstracts mathematical details away from
the user; and any default parameters are set for a balance of speed and precision. Below we
compare the efficacy of 5 fast, approximate robustness measures, followed by an analysis
of the scalability of all 22 measures.

Approximate Measures. It turns out that a large number of robustness measures have
difficulty scaling to large graphs. To help address this, we implement and compare 5 fast
approximate measure, three spectral based (natural connectivity, number of spanning trees,
effective resistance), and two graph based (average vertex betweenness, average edge be-
tweenness) [26, 157]. To approximate natural connectivity we use the top-k eigenvalues
of the adjacency matrix as a low rank approximation [26, 74]. For the number of spanning

trees and effective resistance we take the bottom-k eigenvalues of the Laplacian matrix [26].
For graph measures, average vertex betweenness and average edge betweenness, we ran-
domly sample k nodes to calculate centrality. In both cases, the parameter k represents the
trade-off between speed (low k) and precision (high k). When k is equal to the number of
nodes n in the graph, the approximate measure is equivalent to the original.

To determine the efficacy of each approximation measure we vary k ∈ [5, 300] in incre-
ments of 10, and measure the absolute error between the approximate and original measure,
averaged over 30 runs on a clustered scale free graph containing 300 nodes. In Figure 3.2,
we observe that average vertex betweenness accurately approximates the original measure
using ∼10% of the nodes in the graph. This results in a significant speed-up, and is in
line with prior research [157]. While the absolute error for each spectral approximation is
large, these approximations find utility in measuring the relative change in graph robust-
ness after a series of perturbations (i.e., addition or removal of nodes/edges). While not
immediately obvious, this can enable the development a wide range of optimization based
defense techniques [26, 47].

55

Step 27Step 27Step 22Step 22Step 13Step 13Step 0Step 0

Node Attack on Water Distribution Network

Figure 3.3: TIGER simulation of an RD node attack on the KY-2 water distribution network. Step 0:
network starts under normal conditions; at each step a node is removed by the attacker (red nodes).
Step 13, 22 & 27: after removing only a few of the 814 nodes, the network splits into two and three
and four disconnected regions, respectively.

3.2.3 Running Robustness Measures in TIGER

The code block in Listing 1 illustrates how TIGER abstracts the code complexity away
from the user, enabling them to quickly evaluate the robustness of their own network data
in a simple manner. In line 1, we import a helper function to generate various NetworkX
graphs; line 2 imports a utility function to run the specified robustness measure; line 5
creates a Barabasi-Albert (BA) graph with 1000 nodes; and in lines 8 and 12 we calculate
the graph’s spectral radius and effective resistance, respectively.

1 from graph_tiger.graphs import graph_loader

2 from graph_tiger.measures import run_measure

3

4 # Load a Barabasi-Albert graph with 1000 nodes

5 graph = graph_loader(graph_type=’BA’, n=1000, seed=1)

6

7 # Calculate graph’s spectral radius

8 sr = run_measure(graph, measure=’spectral_radius’)

9 print("Spectral radius:", sr)

10

11 # Calculate graph’s effective resistance

12 er = run_measure(graph, measure=’effective_resistance’)

13 print("Effective resistance:", er)

Listing 3.1: Measuring the spectral radius and effective resistance of a Barabasi-Albert (BA) graph
using TIGER

56

3.3 TIGER Attacks

There are two primary ways a network can become damaged—(1) natural failure and (2)
targeted attack. Natural failures typically occur when a piece of equipment breaks down
from natural causes. In the study of graphs, this would correspond to the removal of a node
or edge in the graph. While random network failures regularly occur, they are typically
less severe than targeted attacks. This has been shown to be true across a range of graph
structures [105, 23]. In contrast, targeted attacks carefully select nodes and edges in the
network for removal in order to maximally disrupt network functionality. As such, we
focus the majority of our attention to targeted attacks. In Section 3.3.1, we provide a high-
level overview of several network failure and attack strategies. Then, in Section 3.3.2 we
highlight 10 attack strategies implemented in TIGER.

3.3.1 Attack Strategies

We showcase an example attack in Figure 3.3 on the Kentucky KY-2 water distribution
network [158]. The network starts under normal conditions (far left), and at each step an
additional node is removed by the attacker (red nodes). After removing only 13 of the 814
nodes, the network is split into two separate regions. By step 27, the network splits into
four disconnected regions. In this simulation, and in general, attack strategies rely on node
and edge centrality measures to identify candidates. Below, we highlight several attack
strategies [63] contained in TIGER.

Initial degree removal (ID) targets nodes with the highest degree δv. This has the effect of
reducing the total number of edges in the network as fast as possible [63]. Since this attack
only considers its neighbors when making a decision, it is considered a local attack. The
benefit of this locality is low computational overhead.

Initial betweenness removal (IB) targets nodes with high betweenness centrality bv. This
has the effect of destroying as many paths as possible [63]. Since path information is
aggregated from across the network, this is considered a global attack strategy. Unfortu-
nately, global information comes with significant computational overhead compared to a
local attacks.

Recalculated degree (RD) and betweenness removal (RB) follow the same process as
ID and IB, respectively, with one additional step to recalculate the degree (or between-
ness) distribution after a node is removed. This recalculation often results in a stronger
attack, however, recalculating these distributions adds a significant amount of computa-
tional overhead to the attack.

57

3.3.2 Comparing Strategies

To help TIGER users determine the effectiveness of attack strategies, we evaluate 5 node
and 5 edge attacks on the Kentucky KY-2 water distribution network in Figure 3.4. We
begin by analyzing each node attack strategy—ID, RD, IB, RB and RND (random
selection)—on the left-side of Figure 3.4. Attack success is measured based on how frac-
tured the network becomes when removing nodes from the network. We identify three key
observations—(i) random node removal (RND) is not an effective strategy on this network
structure; (ii) RB is the most effective attack strategy; and (iii) the remaining three attacks
are roughly equivalent, falling somewhere between RND and RB.

Analyzing Figure 3.3, we can gain insight into why RB is the most effective of the
attacks. If we look carefully, we observe that certain nodes (and edges) in the network act
as key bridges between various network regions. As a result, attacks able to identify these
bridges are highly effective in disrupting this network. In contrast, degree based attacks
are less effective, likely due to the balanced degree distribution. The analysis is similar for
edge based attacks.

3.3.3 Running Network Attacks in TIGER

The code block in Listing 2 illustrates how TIGER users can quickly run a network attack
by modifying 3 parameters—(1) the number of attack simulations ‘runs’, (2) the number of
nodes to remove ‘steps’, and (3) the attack strategy ‘attack’. The output of the simulation
is a plot of graph robustness (e.g., largest connected component by default) versus attack
strength.

1 from graph_tiger.attacks import Attack

2 from graph_tiger.graphs import graph_loader

3

RB

IB

ID

RND

RD

0.2

0.4

200 400 600 800

0.6

0.8

1

00

Edge attack

200 400 600 8000

RBRB

IBIB

IDID

RNDRND

RDRD

Node attack

Number edges removed Number nodes removed

LC
C

(n
or

m
.)

Attacks on Water Distribution Network

Figure 3.4: Efficacy of 5 edge attacks (left) and 5 node attacks (right) on the KY-2 water distribution
network. The most effective attack (RB) disconnects approximately 50% of the network with less
than 30 removed edges (or nodes).

58

4 params = {

5 ’runs’: 1, # number of simulations

6 ’steps’: 30, # remove 1 node per step

7 ’attack’: ’rd_node’, # specify attack

8 ’seed’: 1, # reproducibility

9 }

10

11 # Load Kentucky KY-2 water distribution network

12 graph = graph_loader(graph_type=’ky2’)

13

14 # Run and plot attack simulation

15 a = Attack(graph, **params)

16 results = a.run_simulation()

17 a.plot_results(results)

Listing 3.2: Attacking the Kentucky KY-2 water distribution network using TIGER

3.4 TIGER Defenses

The same centrality measures effective in attacking a network are important to network
defense (e.g., degree, betweenness, PageRank, eigenvector, etc.). In fact, if an attack strat-
egy is known a priori, node monitoring can largely prevent an attack altogether. In Sec-
tion 3.4.1, we provide a high-level overview of several heuristic and optimization based
defense techniques. Then, in Section 3.4.2 we show TIGER users how several defense
techniques can be used to robustify an attacked network.

3.4.1 Defense Strategies

We categorize defense techniques based on whether they operate heuristically, modifying
graph structure independent of a robustness measure, or by optimizing for a particular
robustness measure [26]. Within each category a network can be defended i.e., improve
its robustness by—(1) edge rewiring, (2) edge addition, or (iii) node monitoring. Edge
rewiring is considered a low cost, less effective version of edge addition. On the other hand,
edge addition almost always provides stronger defense [23]. Node monitoring provides an
orthogonal mechanism to increase network robustness by monitoring (or removing) nodes
in the graph. This has an array of applications, including: (i) preventing targeted attacks,
(ii) mitigating cascading failures, and (iii) reducing the spread of network entities. Below,
we highlight several heuristic and optimization based techniques contained in TIGER.

Heuristic Defenses. We overview 5 edge rewiring and addition defenses [23], and compare
the effectiveness of them in Section 3.4.2:

59

1. Random addition: adds an edge between two random nodes.

2. Preferential addition: adds an edge connecting two nodes with the lowest degrees.

3. Random edge rewiring: removes a random edge and adds one using (1).

4. Random neighbor rewiring: randomly selects neighbor of a node and removes the edge.
An edge is then added using (1).

5. Preferential random edge rewiring: selects an edge, disconnects the higher degree node,
and reconnects to a random one.

Optimization Defenses. We discuss the Netshield node monitoring technique which iden-
tifies key nodes in a network to reduce the spread of entity dissemination (e.g., viruses) [5].
To minimize the spread of entities, Netshield minimizes the spectral radius of the graph λ1
by selecting the best set S of k nodes to remove from the graph (i.e., maximize eigendrop).
In order to evaluate the goodness of a node set S for removal, [5] proposes the Shield-value
measure:

Sv(S) =
∑
i∈S

2λ1u1(i)
2 −

∑
i,j∈S

A(i, j)u(i)u(j) (3.4)

The intuition behind this equation is to select nodes for monitoring that have high eigenvec-
tor centrality (first term), while penalizing neighboring nodes to prevent grouping (second
term). We demonstrate the utility of this defense mechanism in Section 3.5.

3.4.2 Comparing Strategies

To help users evaluate the effectiveness of defense techniques, we compare 5 edge defenses
on the Kentucky KY-2 water distribution network, averaged over 10 runs, in Figure 3.5.
The network is initially attacked using the RB attack strategy (30 nodes removed), and the
success of each defense is measured based on how it can reconnect the network by adding
or rewiring edges in the network (higher is better). Based on Figure 3.5, we identify three
key observations—(i) preferential edge addition performs the best; (ii) edge addition gener-
ally outperforms rewiring strategies; and (iii) random neighbor rewiring typically performs
better than the other rewiring strategies.

3.4.3 Running Network Defenses in TIGER

The code block in Listing 3 illustrates how TIGER users can quickly setup a network de-
fense simulation. There are 6 core parameters the user needs to set—the number of defense

60

Edge defense on water distribution network

Edges rewired or added

La
rg
es
tc
on

ne
ct
ed

co
m
po

ne
nt

(n
or
m
.)

0.2
0 10 20 30

0.4

0.6

0.8

1

top 30 rb nodes removed

add
pref.
add
pref.

add
random
add
random

rewire
random
rewire
random
rewire pref.
random
rewire pref.
random

rewire random
neighbor
rewire random
neighbor

Figure 3.5: Comparing ability of 5 edge defenses to improve KY-2 network robustness after remov-
ing 30 nodes via RB attack. Edge addition performs the best, with random edge rewiring performing
the worst.

simulations ‘runs’, the defense strategy ‘defense’, the number of edges to add or rewire
‘steps’, the attack strategy ‘attack’, and the number of nodes or edges to remove ’k a’. The
output of the simulation is a plot showing the ability of the network to recover after it has
been attacked.

1 from graph_tiger.defenses import Defense

2 from graph_tiger.graphs import graph_loader

3

4 params = {

5 ’runs’: 1, # number of simulations

6 ’steps’: 30, # rewire 1 edge per step

7 ’defense’: ’rewire_edge_preferential’,

8 ’attack’: ’rd_node’, # attack strategy

9 ’k_a’: 30, # attack strength

10 }

11

12 # Load Kentucky KY-2 water distribution graph

13 graph = graph_loader(graph_type=’ky2’)

14

15 # Run and plot defense simulation

16 d = Defense(graph, **params)

17 results = d.run_simulation()

18 d.plot_results(results)

61

Listing 3.3: Defending the Kentucky KY-2 water distribution network using TIGER

3.5 TIGER Simulation Tools

We implement 4 broad and important types of robustness simulation tools [159, 102, 63,
23, 5]—(1) dissemination of network entities, (2) cascading failures (3) network attacks,
see Section 3.3, and (4) network defense, see Section 3.4. In Section 3.5.3, we discuss the
implementation of an infectious disease models and how defense techniques implemented
in TIGER can be used to either minimize or maximize the network diffusion. Then, in Sec-
tion 3.3, we discuss the implementation of the cascading failure model and its interactions
with TIGER defense and attack strategies.

3.5.1 Cascading Failures

Cascading failures often arise as a result of natural failures or targeted attacks in a network.
Consider an electrical grid where a central substation goes offline. In order to maintain the
distribution of power, neighboring substations have to increase production in order to meet
demand. However, if this is not possible, the neighboring substation fails, which in turn
causes additional neighboring substations to fail. The end result is a series of cascading
failures i.e., a blackout [52]. While cascading failures can occur in a variety of network
types e.g., water, electrical, communication, we focus on the electrical grid. Below, we
discuss the design and implementation of the cascading failure model and how TIGER

can be used to both induce and prevent cascading failures using the attack and defense
mechanisms discussed in Sections 3.3 and 3.4, respectively.

0 40 80

0.2

0

0.4

0.6

0.8

1

redundancy ≥ 50%

40%40%

20%20%

0%0%

120
Time step

Redundancy vs node attack on electrical grid

La
rg

es
tc

on
ne

ct
ed

co
m

po
ne

nt
(n

or
m

.)

Figure 3.6: Effect of network redundancy r on the US power grid where 4 nodes are overloaded
using ID. When r ≥ 50% the network is able to redistribute the increased load.

62

Cascading Failure on Electrical Grid

step 1step 1 5050 7070

Figure 3.7: TIGER cascading failure simulation on the US power grid network when 4 nodes are
overloaded according to the ID attack strategy. Time step 1: shows the network under normal
conditions. Time step 50: we observe a series of failures originating from the bottom of the network.
Time step 70: most of the network has collapsed.

Design and Implementation. There are 3 main processes governing the network simulation—
(1) capacity of each node cv ∈ [0, 1]; (2) load of each node lv ∈ U(0, lmax); and (3) network
redundancy r ∈ [0, 1]. The capacity of each node cv is the the maximum load a node can
handle, which is set based on the node’s normalized betweenness centrality [160]. The
load of each node lv represents the fraction of maximum capacity cv that the node operates
at. Load for each node cv is set by uniformly drawing from U(0, lmax), where lmax is the
maximum initial load. Network redundancy r represents the amount of reserve capacity
present in the network i.e., auxiliary support systems. At the beginning of the simulation,
we allow the user to attack and defend the network according to the node attack and de-
fense strategies in Sections 3.3 and 3.4, respectively. When a node is attacked it becomes
“overloaded”, causing it to fail and requiring the load be distributed to the neighbors. When
defending a node we increase it’s capacity to protect against attacks.

Simulating cascading failures. To help users visualize cascading failures induced by tar-
geted attacks, we enable them to create visuals like Figure 3.7, where we overload 4 nodes
selected by the ID attack strategy on the US power grid dataset [102] (lmax = 0.8). Node
size represents capacity i.e., larger size→ higher capacity, and color indicates the load of
each node on a gradient scale from blue (low load) to red (high load); dark red indicates
node failure (overloaded). Time step 1 shows the network under normal conditions; at step
50 we observe a series of failures originating from the bottom of the network; by step 70
most of the network has collapsed. To assist users in summarizing simulation results over
many configurations, we enable them to create plots like Figure 3.6, which shows the effect

63

of network redundancy r when 4 nodes are overloaded by the ID attack strategy. At 50%

redundancy, we observe a critical threshold where the network is able to redistribute the
increased load. For r < 50%, the cascading failure can be delayed but not prevented.

3.5.2 Running Cascading Failures in TIGER

The code block in Listing 4 shows how TIGER users can quickly setup a cascading failure
simulation. There are 3 simulation specific parameters—the max node lode ‘l’, node re-
dundancy ‘r’, and maximum node capacity ’c’ (based on betweenness centrality). We set
the attack and defense parameters, similar to Listings 2 and 3, respectively. The simulation
output is a plot measuring the ‘health’ or robustness of the network over time. Users can
optionally generate image snapshots and a video simulation of the cascading failure on the
network data.

1 from graph_tiger.cascading import Cascading

2 from graph_tiger.graphs import graph_loader

3

4 params = {

5 ’runs’: 1, # number of simulations

6 ’steps’: 100, # simulation time steps

7 ’l’: 0.8, # max node load

8 ’r’: 0.2, # node redundancy

9 ’c’: int(0.1 * len(graph)), # node capacity approx.

10

11 ’robust_measure’: ’largest_connected_component’,

12 ’k_a’: 30, # attack strength

13 ’attack’: ’rd_node’, # attack strategy

14 ’k_d’: 0, # defense strength

15 ’defense’: None, # defense strategy

16 }

17

18 # Load U.S. electrical grid graph

19 graph = graph_loader(’electrical’)

20

21 # Run and plot cascading failure simulation

22 cascading = Cascading(graph, **params)

23 results = cascading.run_simulation()

24 cascading.plot_results(results)

Listing 3.4: Cascading failure simulation on U.S. electrical grid using TIGER

64

3.5.3 Dissemination of Network Entities

A critical concept in entity dissemination is network diffusion, which attempts to capture the
underlying mechanism enabling network propagation. In order to augment this diffusion
process, TIGER leverages the defense techniques in Section 3.4 for use with two promi-
nent diffusion models: the flu-like susceptible-infected-susceptible (SIS) model, and the
vaccinated-like susceptible-infected-recovered (SIR) model [159]. For example, to mini-

mize the ability of viruses to spread we can monitor (remove) nodes in the graph to reduce
graph connectivity. On the other hand, if want to maximize network diffusion e.g., mar-
keting campaign, we can use defense techniques like edge rewiring or addition to increase
graph connectivity. Below, we highlight the SIS infectious disease model and how TIGER’s
defense techniques can help contain a simulated outbreak.

Design and Implementation. Each node in the SIS model can be in one of two states,
infected I or susceptible S. At each time step t, an infected node v has a probability β of
infecting each of it’s uninfected neighbors u ∈ N(v). After this, each infected node v has
a probability δ of healing and becoming susceptible again. The relationship between the
birth rate β, death rate δ and the spectral radius λ1 of the graph has been a widely studied
topic. In [124], they show that the spectral radius of a graph is closely tied to the epidemic
threshold τ of a network in an SIS model. In particular, they prove that β

δ
< τ = 1

λ1
. This

means for a given virus strength s, an epidemic is more likely to occur on a graph with
larger λ1. As such, we say that a virus has an effective strength s = λ1 · b/d, where a larger
s means a stronger virus [5].

Simulating dissemination of entities. To help users visualize the dissemination process,
we enable them to create visuals like Figure 3.1, where we run an SIS computer virus
simulation (s = 3.21) on the Oregon-1 Autonomous System network [4]. The top of
Figure 3.1 shows the virus progression when defending 5 nodes selected by Netshield [5].
By time step 1000, the virus has nearly died out. The bottom of Figure 3.1 shows that the
virus remains endemic without defense. To assist users in summarizing model results over
many configurations, we enable them to create plots like Figure 3.8, which show results for
5 SIS effective virus strengths s = {0, 3.21, 6.42, 9.63, 12.84} over a period of 5000 steps.

3.5.4 Running Entity Dissemination in TIGER

The code block in Listing 5 shows how TIGER users can run an entity dissemination sim-
ulation by setting a few key parameters—the type of entity simulation ‘model’ (e.g., SIS,
SIR), the virus birth rate ‘b’, the virus death rate ‘d’, and the fraction of the network that
starts off infected ‘c’. The simulation output is a plot of network infection over time. In

65

Step

In
fe
ct
ed

no
de

s
(%

)

0
0

1

10

100

1k 2k 3k

s = 3.21s = 3.21

s = 0s = 0

6.426.42
9.639.63
12.8412.84

s = 3.21s = 3.21s = 0s = 0

6.426.42

9.639.63
12.8412.84

4k 5k 0 1k 2k 3k 4k 5k

w/o defense w/ defense

Virus Dissemination on AS Network

Figure 3.8: SIS simulation with 5 virus strengths on the Oregon-1 Autonomous System network.
No defense (left), Netshield defense (right).

addition, users can optionally generate image snapshots and a video simulation of the entity
dissemination on the network.

1 from graph_tiger.diffusion import Diffusion

2 from graph_tiger.graphs import graph_loader

3

4 sis_params = {

5 ’runs’: 1, # number of simulations

6 ’steps’: 5000, # simulation time steps

7

8 ’model’: ’SIS’,

9 ’b’: 0.00208, # virus birth rate

10 ’d’: 0.01, # virus death rate

11 ’c’: 0.3, # network % starting infected

12 }

13

14 # Load Oregon-1 Autonomous System graph

15 graph = graph_loader(’as_733’)

16

17 # Run and plot entity dissemination simulation

18 diffusion = Diffusion(graph, **sis_params)

19 results = diffusion.run_simulation()

20

21 diffusion.plot_results(results)

66

Listing 3.5: Entity dissemination simulation on Oregon-1 Autonomous System network using
TIGER

3.6 Conclusion

The study of network robustness is a critical tool in the characterization and understanding
of complex interconnected systems. Through analyzing and understanding the robustness
of these networks we can: (1) quantify network vulnerability and robustness, (2) aug-
ment a network’s structure to resist attacks and recover from failure, and (3) control the
dissemination of entities on the network (e.g., viruses, propaganda). While significant re-
search has been conducted on all of these tasks, no comprehensive open-source toolbox
currently exists to assist researchers and practitioners in this important topic. This lack of
available tools hinders reproducibility and examination of existing work, development of
new research, and dissemination of new ideas. To address these challenges, we contribute
TIGER, an open-sourced Python toolbox containing 22 graph robustness measures with
both original and fast approximate versions; 17 failure and attack strategies; 15 heuristic
and optimization based defense techniques; and 4 simulation tools. TIGER is open-sourced
at: https://github.com/safreita1/TIGER.

67

https://github.com/safreita1/TIGER

Part II

Robust Algorithms

68

Overview

While developing TIGER (Chapter 3), we found a dearth of graph measures that can ef-
fectively incorporate cybersecurity domain knowledge and measure the vulnerability of
networks to lateral attacks. As such, we develop the D2M, the first framework that system-
atically quantifies network vulnerability to lateral attack and identifies at-risk devices from
a graph theoretic perspective. Clicking on the link below will open its PDF version in the
browser:

Chapter 4: D2M: Dynamic Defense and Modeling of Adversarial Move-
ment in Networks Scott Freitas, Andrew Wicker, Duen Horng Chau, Joshua
Neil. SIAM International Conference on Data Mining (SDM). Online, 2020.
https://arxiv.org/abs/2001.11108

69

https://arxiv.org/abs/2001.11108

CHAPTER 4
D2M: DYNAMIC DEFENSE AND MODELING OF ADVERSARIAL

MOVEMENT IN NETWORKS

Given a large enterprise network of devices and their authentication history (e.g., device
logons), how can we quantify network vulnerability to lateral attack and identify at-risk
devices? We systematically address these problems through D2M , the first framework that
models lateral attacks on enterprise networks using multiple attack strategies developed
with researchers, engineers, and threat hunters in the Microsoft Defender Advanced Threat
Protection group. These strategies integrate real-world adversarial actions (e.g., privilege
escalation) to generate attack paths: a series of compromised machines. Leveraging these
attack paths and a novel Monte-Carlo method, we formulate network vulnerability as a
probabilistic function of the network topology, distribution of access credentials and initial
penetration point. To identify machines at risk to lateral attack, we propose a suite of
five fast graph mining techniques, including a novel technique called ANOMALYSHIELD

inspired by node immunization research. Using three real-world authentication graphs
from Microsoft and Los Alamos National Laboratory (up to 223,399 authentications), we
report the first experimental results on network vulnerability to lateral attack, demonstrating
D2M ’s unique potential to empower IT admins to develop robust user access credential
policies.

4.1 Introduction

Attack campaigns from criminal organizations and nation state actors are quickly becoming
one of the most powerful forms of disruption. In 2016 alone, malicious cyber activity cost
the U.S. economy between $57 and $109 billion [2]. These cyber-attacks are often highly
sophisticated, targeting governments and large-scale enterprises to interrupt critical ser-
vices and steal intellectual property [3]. Unfortunately, once an attacker has compromised
a single credential for an enterprise machine, the whole network becomes vulnerable to
lateral attack movements [6], allowing the adversary to eventually gain control of the
network (i.e., escalating privileges via credential stealing [7]).

Despite their prevalence, observing and analyzing lateral attacks is challenging for mul-
tiple reasons: (1) lateral attacks are still relatively sparse compared to the unsuccessful at-
tack; (2) attack ground-truth is hard to ascertain, and generally partially uncovered through
investigation; (3) incident reports are frequently withheld from the public for security and

70

Penetrate Explore Compromise

2. Analyst Tests Attack Strategy

1 1

2

1

2

3

User

Admin

Domain
Controller

1. Build Authentication Graph 3. Vulnerability Analysis

Monitored

Figure 4.1: Our D2M framework: 1. Builds an authentication graph from device authentication
history; 2. Allows security analysts to test different attack strategies to study network vulnerability;
3. Identifies at-risk machines to monitor, preempting lateral attacks.

privacy concerns; and (4) due to the fact that the adversary already has a valid credential for
the network (e.g., gained through phishing [161]), attackers can operate as a legitimate user.
While real attack data does exist—due to the above challenges, it is rarely fully visible, or
accessible, making the study of a “complete” attack highly problematic.

Our Contributions We propose D2M , the first framework that systematically quantifies
network vulnerability to lateral attack and identifies at-risk devices (Fig. 4.1). Our major
contributions include:

• Attack Strategies D2M enables security researchers to integrate their crucial domain
knowledge from studying prior attacks in the form of attack strategies. We developed
three attack strategies by actively engaging researchers, engineers and threat hunters in
the Microsoft Advanced Threat Protection group, whose expertise lies in tracking down
adversaries in a post-breach environment (once adversary is on network). D2M inte-

71

grates real-world adversarial actions (e.g., privilege escalation), generating attack paths
consisting of a series of compromised machines (Sec. 4.5; Fig. 4.1.2).

• Network Vulnerability Analysis We formulate a novel Monte-Carlo method for lateral
attack vulnerability as a probabilistic function of the network topology, distribution of
access credentials and initial penetration point (Fig. 4.1.3). This empowers IT admins to
develop robust user access credential policies and enables security researchers to study
the vulnerability of a network to lateral attack (Sec. 4.6).

• Network Defense by Identifying At-risk Machines To identify machines at risk to lat-
eral attack, we propose a suite of five fast graph mining techniques, including a novel
technique called ANOMALYSHIELD which prioritizes machines with anomalous neigh-
bors and high eigencentrality (Fig. 4.1.3; Sec. 4.7).

• Evaluation Using Real-World Data Using three real-world authentication graphs from
Microsoft and Los Alamos National Laboratory (LANL; up to 223,399 authentications),
we report the first experimental results on network vulnerability to lateral attack and at-
risk machine identification (Sec. 4.5).

• Impact to Microsoft and Beyond. The Microsoft Defender Advanced Threat Protection
product is deployed to thousands of enterprises around the world, and is a leader in the
Endpoint Detection and Response (EDR) market [162]. The ability to detect and prevent
lateral movement is one of the most challenging areas of post-breach detection. This
research has led to major impact to Microsoft products, inspiring changes to the product’s
approach to lateral movement detection.

Table 4.1 describes the main symbols used in the chapter. We follow standard notation
and use capital bold letters for matrices (e.g., A), lower-case bold letters for vectors (e.g.,
a) and calligraphic font for sets (e.g., S).

4.2 Background and Our Differences

Our work intersects the domains of lateral attack and graph mining, we briefly review
related work below. Different from existing work that detects lateral movement after an
adversary is on the network, our work quantifies network vulnerability to lateral attack
and identifies at-risk machines. Another important distinction is that this work uses real-
world enterprise authentication graphs, while most prior work has not.

72

Symbol Definition

G Directed, unweighted, attributed graph
V , E Set of nodes and edges in graph G
n,m Number nodes |V |, edges in |E| in G
A(i, j) Adj. matrix of G at ith row, jth column
u(i) Eigenvector at position i
C, c Credential set; credential instance
D Credential generation process
d Credential vector
H, h Ordered hygiene set; hygiene instance
N+(v), N(v) Successors of v; neighbors of v
R, T Set of start nodes; set of attacker moves
Sk Set of k nodes to monitor
SV (Sk), Shield value of Sk
AV (Sk) Anomaly value of Sk
L(G) Vulnerability of G to lateral attacks
p Attack path
a Per-machine anomaly vector
is Number of sub-path intervals
k Number of machines to vaccinate

Table 4.1: Symbols and Definition

4.2.1 Detecting Lateral Attacks

Significant research in detecting lateral movement in networks has been done [163, 164,
165, 166]. Latte [163], a graph based detection framework, discovers potential lateral
movement in a network using forensic analysis of known infected computers. In [164],
Neil et al. detects lateral attacks using statistical detection of anomalous graph patterns
(e.g., paths, stars) over time. Alternatively, Noureddine et al. [165] proposes a zero-sum
game to identify which machines a defender should monitor to slow down an attacker.
Finally, a data fusion technique is proposed by Fawaz et al. [166], where host-level process
communication graphs are aggregated into system-wide communication graphs to detect
lateral movement.

4.2.2 Graph Mining & Network Security

Graph mining has been extensively applied to the more general domain of network secu-
rity. Authentication graphs have been used to study network security from a variety of
viewpoints [6, 167, 164]. In [6], Hagberg et al. studies credential hopping in authentication
graphs and finds that by reducing a machine’s credential cache, lateral movement can be
restricted. Alternatively, Kent et al. [167] develops individual user authentication graphs

73

to differentiate normal authentication activity from malicious. Orthogonal to the authenti-
cation graph and our work, attack graphs have been proposed to analyze a network’s risk
to known security issues [168, 169, 170]. These graphs represent sequences of known sys-
tem vulnerabilities that can be maliciously exploited; and are often used by IT admins to
determine patch priority.

4.3 Authentication Graph

D2M converts authentication history of network devices into an authentication graph,
where directed edges represent machine-machine authentications (i.e., logons) in an orga-
nization. Below, we provide an overview of the authentication graph setup and the infusion
of real-world domain knowledge into its construction.

4.3.1 Building Graph Structure

Modern enterprise computer networks typically rely on one of two types of centrally man-
aged authentication mechanisms to authenticate user activity: Microsoft NTLM [171] or
MIT Kerberos [172]. To avoid repeated authentication with network resources (e.g., printer,
corporate web sites, email), both NTLM and Kerberos implement credential caching where
user credentials are stored on the computer until either the user logs off (Kerberos), or the
machine is restarted (NTLM) [6]. While these cached credentials are convenient for legiti-
mate user activity, they pose significant risk for malicious exploitation [7, 173].

Leveraging this authentication history, we form a directed, unweighted graph G =

(V , E), where an edge represents an authentication between source machine vs and desti-
nation machine vd (see Fig. 4.1.1). We combine all authentications between two machines
into a single edge. These authentication events are recorded over a period of time, forming
the graph topology of an organization [6, 167]. To verify that a remote connection between
two machines can be established, authentication information is passed using cached cre-
dentials. In an enterprise network, these credentials typically follow a hierarchical scheme:
user (c1) at the bottom, local admin (c2) and network admin in the middle (c3), and domain

admin (c4) at the top (c1 < c2 < c3 < c4) [173]. Depending on the type of cached cre-
dential, it will be valid until the user logs out (Kerberos) or until the machine is restarted
(NTLM).

4.3.2 Integrating Domain Knowledge

To enhance D2M with realistic security and attack practices, we integrate the following
three components into our framework: (1) per-machine credential caching; (2) network

74

hygiene (i.e., how many ‘users’ and ‘admins’ on the network); and (3) domain controller
modeling.

Credential Caching We embed attribute information into graph G by giving each machine
v ∈ V a cached credential. These credentials are stored as a vector d ∈ Rn, where each en-
try is a machine in the authentication graph containing the most recent credential d(i) = c.
While some credential schemes have additional levels and queue lengths as active directory
policies, our approach captures representative security information.

Network Hygiene We model various credential distributions through three levels of hy-
giene h ∈ H due to the unavailability of credential information in the network d =<

c1, c2, ..., cn > where n = |V|. Each hygiene level (h1: low, h2: medium, h3: high) repre-
sents the frequency with which credential types are observed on the network. Intuitively, a
low hygiene level (h1) models a network with loose IT policies and an abundance of high-
level administrator credentials. In contrast, a high hygiene level (h3) represents a network
with strict IT policies and limited distribution of admin credentials. We select each hygiene
distribution h ∈ H as: h1 = {c1: n, c2: n/2, c3: n/5, c4: n/20}, h2 = {c1: n, c2: n/4,
c3: n/10, c4: n/50} and h3 = {c1: n, c2: n/8, c3: n/20, c4: n/80}, which are determined
experimentally in conjunction with domain experts.

In practice, we distribute these credentials for a given hygiene h as follows. For ev-
ery machine in the network v ∈ V we assign the lowest authorization level d(v) = c1.
We then distribute higher level credentials as follows—for each increasing credential level
c ∈ {c2, c3, c4}, we randomly select h(c) machines from V and loop through each one,
replacing it’s credential level with a higher one. While these distributions cannot match
every organization’s IT policies, we select them to model a broad range.

Domain Controller & Privilege Escalation The final component we model is the domain
controller, which controls access to network resources. When a source machine vs at-
tempts to establish a remote connection to a destination machine vd, the domain controller
determines if vs has sufficient privileges d(vs) ≥ d(vd). Since an organization’s domain
controller(s) are never observed with certainty, we identify it using PageRank (α=0.15)
[140]—assigning the machine with largest PageRank vector r ∈ Rn component the role of
domain controller vdc = argmax(r). After discussions with domain experts, we make the
simplifying assumption that the machine with largest PageRank is the domain controller
vdc, since it often has the largest number of incoming edges (from incoming authentication
requests).

Finally, we incorporate the concept of privilege escalation by allowing the attacker to
connect to a machine that is one credential level higher. That is, if the attacker has collected

75

credentials c1 and c2, they can connect to a c1, c2, or c3 machine. In practice, this is done
through mining the memory of the machine to gain higher levels of credential [174].

4.4 Formulating the Research Problems

We formally define the three problems that D2M addresses below. Then we present our
solutions for them in Section 4.5, 4.6, and 4.7 respectively.

Problem 1 Lateral Attack Modeling
Given: an attack strategy, an initial penetration point, and directed unweighted graph

G with associated credential distribution d ∈ D

Find: an attack path p =< v1, v2, ...vi..., vt > in graph G that starts from the penetra-

tion point and reaches the domain controller, while escalating privileges in increasing

order (see Fig. 4.2)

Problem 2 Lateral Attack Vulnerability
Given: graph G with credential distribution d ∈ D

Measure: vulnerability L(G) to lateral attacks

Problem 3 Lateral Attack Defense
Given: graphG with credential distribution d ∈ D, and suspected adversary movement

p

Identify: k best machines to monitor for attacks

4.5 D2M: Lateral Attack Modeling

We present our solution for the lateral attack modeling problem (Sect. 4.4: Problem 1). We
begin with an overview of the lateral attack process in Section 4.5.1. Section 4.5.2 presents
lateral attack strategies—developed with Microsoft domain experts—that produce lateral
movement. Section 4.5.3 details the algorithm for modeling lateral attacks on authentica-
tion graphs.

4.5.1 Lateral Attack Overview

An enterprise attack typically follows a kill chain, which can be distilled into three phases—
(1) penetration of the network; (2) exploration of the network and escalation of privileges;
and (3) exfiltration of data back to the command and control server [175]. We discuss each
phase below and highlight our modeling assumptions.

76

1. Attacker Penetrates
User Machine

2. Escalates
Privileges to Admin

3. Escalates
to Network Admin

5. Compromises
Domain Controller

4. Escalates
to Domain Admin

Figure 4.2: Attack path generated by D2M . 1. Network is penetrated; 2-4. Attacker explores the
network and escalates privileges; 5. Attacker compromises the domain controller, gaining control
of the network.

Penetration An enterprise network is typically penetrated through two mechanisms—(a)
phishing campaigns targeting organization employees or (b) incidental exposure from em-
ployees downloading malware on high-risk websites (drive-by download) [176]. We as-
sume the former, since sophisticated adversaries often target enterprise networks for pen-
etration. A phishing campaign begins by targeting organization employees through au-
thentic looking emails containing malicious attachments or web links. These malicious
attachments contain malware that installs a backdoor; once a backdoor is installed the at-
tacker gains remote access to the machine, penetrating the enterprise network. We model
this penetration process by assuming that most compromised employees (machines) v ∈ V
are at the c1 credential level and let the attacker randomly start on any of these machines
R = {v ∈ V | d(v) = c1}.

Explore & Exploit Once an adversary is on a network, their goal is to explore the network
and escalate privileges. This process begins by stealing the infected machines cached cre-
dentials, allowing them to authenticate with neighboring machines. These credentials can
be stolen in a number of ways, however, it is beyond the scope of this work and we refer the
reader to [173]. Once the adversary has connected to a neighboring machine, they again
steal the cached credentials [7] and continue this process until they have obtained domain

77

admin privileges c4. We model this attack process in two ways—(1) black-box, where the
attacker has no prior information on the network (i.e., normal pattern of authentications);
and (2) gray-box, where the attacker has prior information on the network layout, possibly
through prior reconnaissance or inside help.

Exfiltrate After the adversary has obtained a domain admin credential c4, they are able to
connect to any networked machine, freely exploring the network until they reach the do-
main controller. Upon accessing the domain controller, the attacker gains full control over
the network. At this point the adversary can sweep the network for valuable information
and exfiltrate with impunity. We leave modeling this aspect of the kill chain to future work.

4.5.2 Lateral Attack Strategies

In conjunction with domain experts, we develop three attack strategies to model lateral
attacks on authentication graphs; one black-box and two gray-box.

Black-Box Attack

In the black-box setting we assume the attacker has no knowledge about the network and
model movement through a modified random walk called RandomWalk-Explore (RWE).

RandomWalk-Explore (RWE) with 0.85 probability draws a machine v uniformly at ran-
dom from the set of unvisited neighboring machines T . With probability 0.15, the attacker
randomly jumps with uniform probability to a machine in R; this helps to model some of
the usual behavior that can occur during an attack (e.g., when an attacker finds remote ma-
chine information in plain-text). In addition, we select 0.15 as the random jump probability
to align with information retrieval literature [140]. We model the RWE process in Equa-
tion 4.1, which describes the probability mass function (PMF) of a discrete random variable
X1, which can take on any value in the rangeRX1 = T ∪Rwith probability PX1(v). Based
on discussions with threat hunters, we believe this form of uninformed exploration is the
most realistic of the attack strategies.

PX1(v) =

0.15/|R|, if v ∈ R

0.85/|T |, if v ∈ T

0, otherwise

(4.1)

Gray-Box Attacks

In the gray-box setting, the attacker has additional information in the form of the net-
work topology—allowing for informed attack strategies. We propose two strateiges, Rank-

78

Explore (RE) and Degree-Explore (DE).

Rank-Explore (RE) with 0.85 probability draws a machine v at random from the set of
unvisited neighboring machines T with weight proportional to its PageRank vector r. With
probability 0.15, the attacker randomly jumps with uniform probability to a machine inR.
This process is modeled in Equation 4.2.

PX2(v) =

0.15/|R|, if v ∈ R

0.85 · r(v)/
∑
i∈T

r(i), if v ∈ T

0, otherwise

(4.2)

Degree-Explore (DE) with 0.85 probability draws a machine v ∈ T with weight propor-
tional to the distribution of the network’s degree vector δ = diag(A · e). With probability
0.15, the attacker randomly jumps with uniform probability to a machine in R. This pro-
cess is modeled in Equation 4.3.

PX3(v) =

0.15/|R|, if v ∈ R

0.85 · δ(v)/
∑
i∈T

δ(i), if v ∈ T

0, otherwise

(4.3)

After a neighbor v has been selected by the attack strategy, we check that the attacker
has the required credential level to visit this machine. For example, if c2 is the current
highest collected credential, then the attacker can move to any machine with credential
level c1, c2, or c3. If the move is valid, we update the set of unvisited neighbors T according
to Equation 4.4 and allow the attacker to collect that machine’s credential.

T = T \ {v} ∪N+(v) (4.4)

4.5.3 Lateral Attack Algorithm

We allow the attacker to randomly penetrate various points of the network (v ∈ R) and then
move according to one of the three strategies: RWE, RE and DE, until the domain controller
vdc is reached or there are no neighbors to visit. Each successful run of this simulation
generates an attack path p =< v1, v2, ...vi..., vdc >, representing the sequence of machines
visited, with the last node vdc representing the domain controller. This process is modeled
in Algorithm 1 and repeated for multiple credential distributions d ∈ D to eliminate bias
from a single distribution. An example attack path generated from Algorithm 1 can be seen
in Figure 4.2.

79

Algorithm 1: Lateral Attack Modeling
Input: Adj. matrixA, h, attack strategy
Result: Attack pattern p

1 let ro = PageRank(A); and δo = diag(A · 1)
2 let d ∼ Dh // distribute credentials
3 R = {v ∈ V | d(v) = c1} // start nodes
4 v = rand(R); let T = N+(v); p = [v]
5 tried = {}; visited = {}
6 while v 6= vdt and |T | > 0 and |tried| < |T | do
7 T = T / tried
8 if attack strategy == RWE then
9 v ← X1

10 else if attack strategy == RE then
11 r = ro(T); v ← X2

12 else if attack strategy == DE then
13 r = δo(T); v ← X3

14 T = T ∪ tried
15 if V alid(v) and v 6∈ visited then
16 tried = {}
17 T = T \ {v} ∪N+(v)
18 p += v; visited += v
19 else
20 tried ∪ v
21 Return p

4.5.4 Analysis of Lateral Attack Algorithm

The time and space complexity of Algorithm 1 is O(n2) and O(n+m), respectively.
There are two time expensive computations, PageRank O(n); and attack strategy ma-

chine selection inside the while loop O(n). Since the while loop can visit every node in the
graph, the worst case complexity will be O(n2). Space is linear with respect to nodes and
edges O(n+m) in the graph. Detailed proofs are omitted to save space.

4.6 D2M: Lateral Attack Vulnerability

We present our solution for the lateral attack vulnerability problem (Sect. 4.4: Problem 2).
We begin by discussing the importance of network vulnerability scoring. We then formally
introduce our method of measuring a network’s vulnerability to lateral attacks. Finally, we
discuss alternative graph vulnerability scores and why they are less suited to the task of
measuring vulnerability to lateral movement.

Vulnerability Scoring To make data driven decisions regarding IT policy in an enterprise
network, it is important to quantify the risk a network faces to lateral movement. Unfor-
tunately, directly measuring this risk is difficult, requiring complex interactions of many
unknown variables. To simplify these interactions, we propose to quantify network vulner-

80

ability to lateral attack L(·) as a function of three random variables—(1) network topology
G, (2) distribution of credentials d ∈ D and (3) initial point of penetration v ∈ R.

Since the true credential distribution d =< c1, c2, c3, c4 > is unknown, along with
knowledge of the organizations IT policies (strict, loose: Section 4.3.1), we model creden-
tial distributions through the use of hygiene levels h ∈ H. For a given hygiene level h ∈ H,
we can marginalize out the dependency of the vulnerability score to the credential distri-
bution d ∈ Dh in expectation, reducing the vulnerability score to L(G,H = h, V = v).
In addition, we can simulate the attacker penetrating many different points in the network
v ∈ R, allowing us to marginalize out the dependency to v and reduce the score to L(G, h).
We can view this process in Equation 4.5 through the lens of Monte Carlo simulation,
where in expectation we compute the graph vulnerability across many different credential
distributions d ∈ D and start nodes v ∈ R.

L(G, h) =
1

|Dh

1

|R|
∑
d∈Dh

∑
v∈R

f(G,d, v) (4.5)

The vulnerability score L(G, h) is a real number between 0 ≤ L(G, h) ≤ 1, where a
higher value indicates a more vulnerable network for the given topology G and hygiene
level h. Intuitively, this score is saying that a network is more vulnerable if attacks are on
average more successful for many credential distributions d ∈ D and penetration points
v ∈ R. We measure an attack’s success through f(·), which simulates an attack using
Algorithm 1. A value of f(G,d, v) = 1 indicates a successful attack, which we define as
being able to reach the domain controller vdc. Future work could generalize this to other
targets such as high value servers.

We further simplify the vulnerability score L(·) by marginalizing out the dependency
to hygiene level h ∈ H. This simplifies Equation 4.5 to a function of the network topology
G, as seen in Equation 4.6.

L(G) =
∑
hi∈H

p(hi) · L(G, hi) (4.6)

With no prior knowledge on the true distribution of hygiene levels in an organization,
we assume a uniform prior p(h) = 1/3.

Alternative Scoring Significant work has gone into measuring the vulnerability of graphs
[49, 89, 5]. For example, in [5] the authors define vulnerability of an undirected graph G
as the largest eigenvalue L(G) , λ of the adjacency matrix. The intuition is that as the
largest eigenvalue increases, so does the path capacity of the graph. However, this form of
topological vulnerability scoring can only indirectly measure the vulnerability of the graph
to lateral movement since no security domain knowledge is integrated.

81

4.7 D2M: Lateral Attack Defense

We present our solution for the lateral attack defense problem (Sec. 4.4: Problem 3), where
the objective is to identify the best set of k machines Sk to monitor for lateral attacks. Once
this set of machines Sk has been identified, multiple safeguards can be implemented, in-
cluding: changing the sensitivity of on device machine learning models and force resetting
the password.

We make the following assumptions during the defense process—(a) there exists per-
machine anomaly detection models that alert on unusual behavior (e.g., deviation in port
or process activity). Since behavioral deviations have a larger false positive rate, their
behavior is anomalous but not necessarily malicious. For this reason, anomaly alerts are
ill-suited for investigation in isolation due to low confidence. However, these deviation
scores are useful for machine monitoring decisions, especially when these alerts aggregate
together [164]. (b) We assume that each anomaly detection model is providing real-time
feedback to the defender; and (c) that the defender views all anomalous activity as it occurs
through the system alerts. While assumption (c) is strong, we leave it to future work to
model partial information defense strategies.

4.7.1 Defense Strategies

We propose a suite of five defense strategies, three static and two dynamic. A static strat-
egy takes into account only the network topology G; useful for protecting machines when
monitoring resources are limited. A dynamic strategy considers both the network topol-
ogy G and suspected lateral path movement activity pt,pt−1, ...pi...,p0, where pi ∈ Rn

is a sub-path containing suspicious activity in a given interval. This could be useful for
real-time protection malicious activity investigation.

Each attack path p is divided into is sub-paths, where each sub-path pi is of equal size
(except for, possibly, the last sub-path pt) where t ∈ [0, d p

is
e]. A larger value of is creates a

few long sub-paths, which could represent fast moving attacks in the network; conversely,
a small is creates many short sub-paths, representing slow attacks.

Rank-Defense (RD) statically identifies at-risk machines based on the network’s PageRank
[140]. Assuming a sorted PageRank vector, we identify machines as follows: Sk = ∪ki=1ri.

Degree-Defense (DD) statically vaccinates the network according to the machines in the
network with highest degree. With a sorted degree vector, we identify machines as follows:
Sk = ∪ki=1δi. While RD and DD are simple defensive strategies, we are not aware of any
work proposing to identify at-risk machines to lateral attacks using them.

82

NetShield (NS) [5] statically vaccinates the network according to the machine’s Shield-
Value (SV) in Equation 4.7. The actual selection of Sk occurs in conjunction with the
NetShield algorithm from [5], where the intuition is to select nodes with highest eigencen-
trality [177] while enforcing distance between selected machines (small or zero A(i, j)).
Here,A ∈ {0, 1}n×n, λ is the largest eigenvalue, and u is the associated eigenvector.

SV (Sk) =
∑
i∈Sk

2λ · u(i)2 −
∑
i,j∈Sk

A(i, j)u(i)u(j) (4.7)

Random Anomalous Neighbor Defense (RAND) dynamically identifies machines by se-
lecting an anomalous machine va with weight proportional to its anomaly score a(va),
where each element a(v) ∈ [0, 1] and a ∈ Rn. We assume that when an alert is gen-
erated for a machine in a sub-path, it produces a value of a(v) = 1, repeating for every
machine v ∈ pi. After machine monitoring set Sk is identified using sub-paths pi, ...p0,
the anomaly scores are decayed at+1 = at/2 to give weight to recent activity (determined
experimentally).

The RAND strategy in described through Equations 4.8 and 4.9. Eq. 4.8 describes the
PMF of discrete random variable X4, which can take on any value in the range RX4 =

{v ∈ V | a(v) > 0} with probability PX4(v). After drawing a machine va ∼ X4, we
uniformly at random select a neighbor from va. This can be seen in Equation 4.9, which
describes the PMF of discrete random variable X5, where X5 can take on any value in the
range RX5 = N+(va) with probability PX5(v). This process repeats until k machines have
been selected.

PX4(v) =

a(v)/

∑
i∈V
a(i), if v ∈ RX4

0, otherwise
(4.8)

PX5(v) =

1/|N+(va)|, if v ∈ N+(va)

0, otherwise
(4.9)

ANOMALYSHIELD (AS), a novel method we introduce for dynamic machine identifica-
tion. We select machines for monitoring according to their ANOMALYVALUE (AV) in
Equation 4.10, in combination with ANOMALYSHIELD (Algorithm 2). The intuition is that
we prioritize machines with anomalous neighbors and high eigencentrality.

AV (Sk) =
∑
i∈Sk

u(i)
∑
j∈N(i)

a(j)u(j) (4.10)

83

Since both NetShield and AnomalyShield use eigenvector centrality as the underlying
centrality metric, we convert the directed authentication graphs to undirected ones for use
in the strategies.

Algorithm 2: ANOMALYSHIELD
Input: Adjacency matrixA, anomaly vector a, and vaccination budget k
Result: a set Sk with k nodes

1 Compute first eigenvalue λ and corresponding eigenvector u ofA
2 c =A * (a * u)
3 score = c * u
4 for iter = 1 to k do
5 v = argmaxi score(i), add v to set S
6 score(v) = -1
7 return S

4.7.2 Analysis of Defense Strategies

We evaluate time and space complexity with respect to each strategy since they are the
dominating defense cost. The space is uniform across strategy O(n + m + k), with time
complexity shown below.

Time =

O(nlogn), if defense = RD

O(nlogn), if defense = DD

O(nk2 +m), if defense = NS [49]

O(kn+m), if defense = AS

O(kn), if defense = RAND

(4.11)

4.8 Experiments

4.8.1 Experimental Setup

All experiments are conducted on three real authentication graphs, collected over 30 days
(statistics in Table 4.2). Two graphs are from Microsoft: anonymized enterprise networks
Gs and Gl; and one is from Los Alamos National Lab [178]: open-sourced network Glanl.
For each attack strategy and hygiene level, we strive to collect 200 unique attack paths for
50 credential distributions d ∈ D. These parameters are determined based on the available
2-week computation budget for data collection. Certain combinations of G and d have a
high rate of attack failure; we terminate the collection process at 10,000 failed attempts,
collecting as many as possible.

84

Graph Source |V | |E| ρ C δavg

Gs Microsoft 100 279 0.028 0.23 5.58
Gl Microsoft 2,039 3,853 0.001 0.26 3.78
Glanl LANL 14,813 223,399 0.001 0.62 30.16

Table 4.2: Graph Statistics. ρ: graph density, C: average clustering coefficient, δavg: mean node
out-degree.

4.8.2 Network Vulnerability Analysis

In Table 4.3, we summarize the first experimental results on network vulnerability to lat-
eral attack by analyzing the attack strategies Rank-Explore (RE), Degree-Explore (DE), and
RandomWalk-Explore (RWE) (discussed in Sect. 4.5). For each strategy, we average the
attack path length across all credential distributions. We compute the network vulnerabil-
ity statistics using Eq. 4.5—hygiene-specific L(G, h); and Eq. 4.6—whole-network L(G)

from Section 4.6. We identify multiple key insights:

1. Informed Strategies Lead to Quicker Attacks The RE and DE strategies produce
shorter paths in general, compared to RWE. This is expected, as prior knowledge should
help the attacker reach the domain controller in less time. Also, adversaries likely prefer
shorter attack paths, which leaves smaller footprints for anomaly systems to detect.

2. Improving Hygiene Reduces Vulnerability Increasing network hygiene (h1 → h2 →
h3) causes longer attack paths (or none at all) and generally reduces vulnerability (e.g.,
for Gs and Gl). On graph Gs, the highest hygiene level h3 critically reduces high-level
admin credentials, significantly improving network robustness (vulnerability reduced
to 0). Such findings can empower IT admins to develop robust user access credential
policies.

3. Linking Topology to Network Vulnerability Networks that are well-connected are
more vulnerable to lateral attack (e.g., Glanl, with higher average clustering coefficient
and node degree). This is expected, due to increased lateral movement opportunities.
Relatedly, improving network hygiene level in such a well-connected network does not
seem to reduce network vulnerability.

4.8.3 Defense Strategy Analysis

We report the first results for identifying machines at-risk to lateral attack, evaluating each
defense strategy proposed in Section 4.7. We measure the success of each strategy by its
ability to predict attacker movement. That is, given graph topology G and suspected lateral
attack movement pi, ...,p0, predict attack activity at pi+1 (each pi is a sequence/path of

85

Avg. Path length Vulnerability

Graph Hygiene RE DE RAND L(G, h) L(G)

Gs

h1 19 19 25 .773
h2 49 39 39 .801 .525
h3 0 0 0 0

Gl

h1 33 36 46 .005
h2 63 63 68 .006 .005
h3 133 139 139 .004

Glanl

h1 22 18 45 .967
h2 88 128 90 .981 .976
h3 - - 249 .981

Table 4.3: Vulnerability Statistics. Statistics excluded for Glanl strategies RE and DE in h3 as
computation exceeded budget (Sect. 4.8.1).

suspected machines traversed by the attacker). Formally, we intersect the predicted at-

risk machines Sk with pi+1. Since the defender likely monitors the domain controller, we
exclude it from Sk. We repeat this process for each sub-path (except p0) and average over
all attack paths. Figure 4.3 shows every combination of attack and defense strategy, with
budget k=8 and hygiene h2, which provide representative results. We identify multiple key
insights:

1. ANOMALYSHIELD as Effective General Defense ANOMALYSHIELD generally per-
forms well (identified more machines) across: network topology (rows in figure), ad-
versary’s prior knowledge (columns), and attack speed (horizontal axes). We believe
this is because ANOMALYSHIELD focuses on high-centrality machines with anomalous
neighbors, combining desirable attributes from static and dynamic methods.

2. Similar Effectiveness in Small Graphs All strategies perform similarly in small graph
Gs (first row), since fewer machines exist for monitoring.

3. Large Graphs Require Informed Defense Uninformed defense strategy RAND is sig-
nificantly less effective in the large graphGlanl (last row), especially when encountering
faster attacks. This could be explained by the need for intelligent decision making in the
presence of many options.

4.9 Conclusion

We present D2M , the first framework that systematically quantifies network vulnerability
to lateral attacks and identifies at-risk devices. D2M models lateral attacks on enterprise
networks using attack strategies developed with Microsoft. We formulate network vul-

86

AnomalyShield (AS)AnomalyShield (AS)

Random Anomalous
Neighbor Defense

(RAND)

Random Anomalous
Neighbor Defense

(RAND)

10 (fast)2030 (slow)

.8

.4

1.2

4

2

6

4

2

6

machines
correctly
identified
(avg)

Attack Speed

Degree-ExploreRank-ExploreRandomWalk-Explore
with knowledgeno knowledge with knowledge

Gs

Gl

Glanl

DDDD
NSNS

RDRD

Figure 4.3: Each defense strategy is compared on three graphs and attack strategies, where
ANOMALYSHIELD performs well across a majority of application scenarios.

nerability as a novel Monte-Carlo method and propose a suite of five fast graph mining
techniques, including the novel ANOMALYSHIELD method, to identify at-risk machines.
Using real data, we demonstrate D2M ’s unique potential to empower IT admins to develop
robust user access credential policies.

87

Part III

Robust Databases

88

Overview

To prevent lateral attacks altogether (Chapter 4), we developed MALNET-GRAPH the world’s
largest cybersecurity graph database—containing over 1.2 million graphs across 696 classes—
and show the first large-scale results demonstrating the effectiveness of malware detection
through a graph medium. Clicking on the link below will open its PDF version in the
browser:

Chapter 5: Large-Scale Database for Graph Representation Learning
Scott Freitas, Yuxiao Dong, Joshua Neil, Duen Horng Chau. Neural Infor-
mation Processing Systems (NIPS) Datasets and Benchmarks, 2021. https:
//arxiv.org/abs/2011.07682

Following up on our ground-breaking database MALNET-GRAPH, we extend the modal-
ity of data to incorporate image data through the formation of binary-images which repre-
sent the bytecode of malicious software (MALNET-IMAGE). To date, MALNET-IMAGE is
the largest publicly available cybersecurity image database, offering 24× more images and
70× more classes than the only other public binary-image database. In total, MALNET-
IMAGE will contain over 1.2 million images across a hierarchy of 47 malware types and
696 malware families. Clicking on the link below will open its PDF version in the browser:

Chapter 6 A Large-Scale Image Database of Malicious Software. Scott
Freitas, Rahul Duggal, Duen Horng Chau. [Submitting to] Knowledge Discov-
ery and Data Mining, 2022. https://arxiv.org/abs/2102.01072

89

https://arxiv.org/abs/2011.07682
https://arxiv.org/abs/2011.07682
https://arxiv.org/abs/2102.01072

CHAPTER 5
A LARGE-SCALE DATABASE FOR GRAPH REPRESENTATION LEARNING

With the rapid emergence of graph representation learning, the construction of new large-
scale datasets is necessary to distinguish model capabilities and accurately assess the strengths
and weaknesses of each technique. By carefully analyzing existing graph databases, we
identify 3 critical components important for advancing the field of graph representation
learning: (1) large graphs, (2) many graphs, and (3) class diversity. To date, no single
graph database offers all these desired properties. We introduce MALNET-GRAPH, the
largest public graph database ever constructed, representing a large-scale ontology of ma-
licious software function call graphs. MALNET-GRAPH contains over 1.2 million graphs,
averaging over 15k nodes and 35k edges per graph, across a hierarchy of 47 types and 696
families. Compared to the popular REDDIT-12K database, MALNET-GRAPH offers 105×
more graphs, 39× larger graphs on average, and 63× more classes. We provide a de-
tailed analysis of MALNET-GRAPH, discussing its properties and provenance, along with
the evaluation of state-of-the-art machine learning and graph neural network techniques.
The unprecedented scale and diversity of MALNET-GRAPH offers exciting opportunities
to advance the frontiers of graph representatio n learning—enabling new discoveries and
research into imbalanced classification, explainability and the impact of class hardness.
The database is publicly available at www.mal-net.org.

5.1 Introduction

The emergence of graph data across many scientific fields has led to intense interest in the
development of representation learning techniques that encode structured information into
low dimensional space for a variety of important downstream tasks (e.g., toxic molecule
detection, community clustering, malware detection). However, recent research focusing
on developing graph kernels, neural networks and spectral methods to capture graph topol-
ogy has revealed a number of shortcomings of existing benchmark datasets [179, 180, 181,
182], which often contain graphs that are relatively: (1) limited in number; (2) smaller
in scale in terms of nodes and edges; and (3) restricted in class diversity. The state of
graph representation benchmarks (e.g., PROTEINS [183], IMDB [184], REDDIT [184]) is
analogous to MNIST [185] at its height—a staple of the computer vision community, and
often the first dataset researchers would evaluate their methods on. The graph represen-
tation community is at a similar inflection point, as it is increasingly difficult for current

90

www.mal-net.org

Cybersecurity Computer Vision Social NetworkBioinformaticSmall Molecule

1M100

100

10

10 10k 100k

10k

1k

1k
1

Number of graphs

Avg #
nodes

MalNet
696 classes

FIRSTMM-DB
CGD

DD

ENZYMES
PROTEINS

REDDIT-12K

Twitch-E

Deezer-E

Github-S

Reddit-T

REDDIT-5K
REDDIT-B

MUTAG
PTC-MR

PCBANCI1

Fingerprint
Letter (low-med)

Letter (high)
HIV

YEAST

MUV

COLLAB

IMDB-M
IMDB-B

Node size scales w/ number of classes

1.2M
graphs
1.2M
graphs

17k nodes average15k nodes average

Figure 5.1: MALNET-GRAPH has 1.2M graphs averaging 15k nodes and 35k edges per graph.

databases to characterize and differentiate modern graph representation techniques [179,
180].

To address these issues, we introduce a new graph database called MALNET-GRAPH, a
large-scale ontology of malicious software function call graphs (FCGs). Each FCG repre-
sents calling relationships between functions in a program, where nodes are functions and
edges indicate inter-procedural calls. Through MALNET-GRAPH, we make three major
contributions:

• MALNET-GRAPH: Largest Database for Graph Representation Learning. MALNET-
GRAPH contains 1.2 million function call graphs, averaging over 15k nodes and 35k
edges per graph, across a hierarchy of 47 types and 696 families (Figure 5.1). This makes
MALNET-GRAPH the largest public graph database constructed to date, offering 105×
more graphs, 39× larger graphs on average, and 63× more classes compared to the
popular REDDIT-12K database. We release MALNET-GRAPH with a CC-BY license,
allowing users to share and adapt the database for any type of use. We also provide code
on Github: https://github.com/safreita1/malnet-graph.

• Revealing New Discoveries. The unprecedented scale of MALNET-GRAPH enables new
and important discoveries that were previously not possible. Leveraging the function call
graphs in MALNET-GRAPH, we study popular graph representation learning techniques
in depth, and reveal: (1) the significant challenges they face in terms of scalability and
their ability to handle large class imbalance and (2) that simple baselines can be surpris-
ingly effective at the scale of MALNET-GRAPH;

91

https://github.com/safreita1/malnet-graph

Nodes Edges Avg. Degree

Type # graph # fams. min mean max std min mean max std min mean max std

Adware 884K 250 7 14K 211K 16K 4 31K 605K 38K 0.50 2.21 6.24 0.36
Trojan 179K 441 5 15K 228K 18K 4 34K 530K 42K 0.58 2.05 6.74 0.52
Benign 79K 1 5 35K 552K 30K 3 79K 2M 74K 0.58 2.13 5.30 0.31
Riskware 32K 107 5 12K 173K 16K 4 30K 334K 39K 0.58 2.16 5.42 0.56
Addisplay 17K 38 37 13K 98K 15K 37 28K 246K 34K 0.92 1.97 4.38 0.37
Spr 14K 46 12 28K 169K 21K 7 67K 369K 52K 0.58 2.27 4.70 0.44
Spyware 7K 19 12 5K 55K 6K 7 11K 121K 14K 0.58 1.95 4.27 0.46
Exploit 6K 13 19 24K 102K 14K 14 45K 250K 30K 0.74 1.88 3.34 0.33
Downloader 5K 7 37 20K 107K 28K 37 46K 321K 63K 0.96 1.68 3.53 0.66
Smssend++Trojan 4K 25 16 34K 147K 19K 13 82K 387K 48K 0.81 2.39 3.78 0.23

Table 5.1: Descriptive statistics for 10 largest graph types. See Table 5.4 for all graph statistics.

• Enabling New Research Directions. MALNET-GRAPH offers unique opportunities to
advance the frontiers of graph representation learning by enabling research into imbal-

anced classification, explainability and the impact of class hardness. We believe the
diversity, scale and natural imbalance of MALNET-GRAPH will enable it to become a
benchmark dataset to meet the future research needs of the graph representation commu-
nity. By open-sourcing MALNET-GRAPH, we hope to inspire and invite more researchers
to contribute to this exciting new resource.

5.2 Properties of MalNet

We begin by analyzing 5 key properties of the MALNET-GRAPH database—(1) scale (num-
ber of graphs, average graph size), (2) class hierarchy (3) class diversity, (4) class imbal-

ance and (5) cybersecurity applications. In Section 5.2.1 we compare MALNET-GRAPH

against common graph classification datasets, summarizing the differences in Table 5.2.

Scale. MALNET-GRAPH contains 1,262,024 function call graphs across 47 types and 696
families of malware. When stored on disk, MALNET-GRAPH takes over 443 GB of space
in edge list format, with each graph containing 15,378 nodes and 35,167 edges, on aver-
age. This makes MALNET-GRAPH the largest public graph dataset constructed to date
in terms of number of graphs, average graph size and number of classes. In Table 5.1,
we provide descriptive statistics on the number of nodes, edges, and average degree of
ten of the largest graph types (see Table 5.4 for a full comparison). We believe that this
scale of data is crucial to the future development of graph representation techniques as
current databases are too small to effectively differentiate and benchmark techniques on
non-attributed graphs [179, 180, 181, 182].

Hierarchy. Function call graphs are assigned a general type (e.g., Worm) and specialized

92

Allaple Downadup Klez Mabezat Picsys Ramnit Spybot

Worm

Graph
Family
Graph
Family

Graph
Type
Graph
Type

Figure 5.2: Example of the graph type “worm” and its 7 families.

family label (e.g., Spybot) using the Euphony [186] classification structure (see Figure 5.2).
To generate these labels, Euphony takes a VirusTotal [187] report containing up to 70 la-
bels across a variety of antivirus vendors and unifies the labeling process by learning the
patterns, structure and lexicon of vendors over time. While Euphony provides state-of-the-
art performance, this task is considered an open-challenge due to both naming disagree-
ments [188, 189] and a lack of adopted naming standards [186] across vendors. To help
address this issue, we collect and release the raw VirusTotal reports containing up to 70
antivirus labels for each graph.

Diversity & Imbalance. MALNET-GRAPH offers 47 types and 696 families of func-
tion call graphs following a long tailed distribution with imbalance ratios of 7,827× and
16,901×, respectively. To put this in perspective, MALNET-GRAPH’s smallest class con-
tains only 113 samples of the Click graph, while 884,455 of the Adware type. Models
learning from long-tailed distributions tend to favor the majority class, leading to poor gen-
eralization performance on rare classes. While class imbalance is traditionally solved by
resampling the data (undersampling, oversampling) [190, 191], reshaping the loss function
(loss reweighting, regularization) [192, 193] or accounting for input-hardness [194], it is
largely unexplored in the graph domain. We hope that MALNET-GRAPH can serve as a
source of data to spark novel research in this critical area.

Cybersecurity Applications. A majority of malware samples are polymorphic in nature,
meaning that subtle source code changes in the original malware variant can result in sig-
nificantly different compiled code (e.g., instruction reordering, branch inversion, register
allocation) [8, 9]. Cybercriminals frequently take advantage of this to evade signature
based detection, a predominant form of malware detection [10]. Fortunately, these sub-
tle source code changes have minimal effect on the control flow of the executable, which
can be represented with a function call graph (see Figure 5.3). Research has demonstrated
that function call graphs (FCGs) can effectively defeat the polymorphic nature of malware
through techniques like graph matching [11, 12, 13, 14, 15] and representation learning [16,
17]. Unfortunately, prior to the release of MALNET-GRAPH, no large-scale FCG datasets

93

f4

f5

f3

f2

f11. Program Start

3. Program Finish3. Program Finish

2. Execution Path2. Execution Path

Figure 5.3: FCG from the Banker++Trojan type, and Acecard family. Nodes represent functions
and edges indicate inter-procedural calls. Highlighted in blue is one potential execution path.

have been made publicly available largely due to the proprietary nature of the data. We
note that while open research can significantly advance the frontiers of cybersecurity, it can
be used by malicious actors to conduct research on detection avoidance.

5.2.1 Graph Representation Learning Databases: Advancing the State-of-the-Art

A number of well labeled small datasets have served as training and evaluation benchmarks
for most of today’s graph representation learning techniques As the field advances, larger
and more challenging datasets are needed for the next generation of algorithms. MALNET-
GRAPH offers 105× more graphs, 39× larger graphs on average, and 63× the classes,
compared to the popular REDDIT-12K database. We compare MALNET-GRAPH with
other graph representation learning datasets and summarize the differences in Table 5.2,
highlighting how MALNET-GRAPH advances the field of graph representation learning by
providing large and diverse data.

Cybersecurity datasets. Aside from MALNET-GRAPH, CGD [18] is the only publicly
available cybersecurity dataset we could identify for the task of graph classification. In
surveying the extensive FCG malware detection literature [11, 16, 12, 17, 13, 14, 15] we
observed that almost all data is closed-source; likely due to a combination of security con-
cerns and issues regarding private company data.

Small molecule datasets. There are numerous small molecule datasets, including: HIV [198],

94

Application Dataset Graphs Classes Ratio Avg. Node Avg. Edge Avg. Degree Avg. CC Hierarchy

Cyber
MALNET-GRAPH 1,262,024 696 16,901 15,378 35,167 4.34 .029 X
CGD [18] 1,361 2 1.49 782 1852 4.33 .095 -

Small
molecule

PCBA [195] 437,929 2 - 26 56 2.16 .002 -
MUV [196] 93,087 2 - 24 53 2.16 .001 -
YEAST [197] 79,601 2 1.26 22 23 2.09 .002 -

HIV [198] 41,127 2 - 26 55 2.15 .002 -
NCI1 [199] 4,110 2 1 30 32 2.16 .003 -
PTC-MR [200] 344 2 1.26 14 15 1.98 .009 -

MUTAG [201] 188 2 1.98 18 20 2.19 .000 -

Computer
vision

Fingerprint [202] 2,800 4 276.5 5 4 1.14 .001 -
Letter-low [202] 2,250 15 1 5 3 1.32 .000 -
Letter-med [202] 2,250 15 1 5 5 1.35 .014 -
Letter-high [202] 2,250 15 1 45 5 1.89 .298 -

FIRSTMM-DB [203] 41 11 3 1377 3074 4.50 .263 -

Bioinfo.
DD [204] 1,178 2 1.42 284 716 4.98 .479 -
PROTEINS [183] 1,113 2 1.47 39 73 3.73 .514 -

ENZYMES [183] 600 6 1 33 62 3.86 .453 -

Social
network

Reddit-T [205] 203,088 2 15 24 12 2.01 .047 -
Twitch-E [205] 127,094 2 1.16 30 72 5.39 .549 -

Github-S [205] 12,725 2 1.15 114 117 3.19 .191 -
REDDIT-12K [184] 11,929 11 5.05 391 457 2.28 .033 -
Deezer-E [205] 9,629 2 1.32 23 33 4.29 .510 -
COLLAB [4] 5,000 3 3.35 74 2458 37.37 .891 -
REDDIT-5K [184] 4,999 5 1 509 595 2.25 .027 -
REDDIT-B [184] 2,000 2 1 430 498 2.34 .048 -
IMDB-M [184] 1,500 3 1 13 66 8.10 .969 -
IMDB-B [184] 1,000 2 1 20 97 8.89 .947 -

Table 5.2: Comparison of MALNET-GRAPH properties with common graph classification datasets.
MALNET-GRAPH offers over 1.2 million graphs averaging 15k nodes and 35k edges with a hier-
archical class structure containing 47 types and 696 families. This makes MALNET-GRAPH the
largest public graph database constructed to date, offering 105× more graphs, 39× larger graphs
on average, and 63× more classes compared to the popular REDDIT-12K database. CC is the
clustering coefficient.

MUTAG [201], MUV [196], PCBA [195], NCI1 [199], PTC-MR [200], and YEAST [197].
The HIV dataset, introduced by the Drug Therapeutics Program AIDS Antiviral Screen [206],
tests the ability of chemical compounds to inhibit HIV replication into one of three classes.
MUTAG contains chemical compound graphs divided into two classes according to their
mutagenic effect on bacterium. MUV and PCBA are constructed from PubChem BioAs-
say [207], and contain numerous compounds across 17 tasks and 128 tasks respectively,
where each task is a binary classification problem. NCI1 contains chemical compounds,
screened for their ability to inhibit the growth of a panel of human tumor cell lines. PTC-
MR contains graphs across 2 classes, reporting the effects of chemical compound carcino-
genicity on rats. YEAST contains molecule graphs screened for anti-cancer tests, with the

95

binary classification of active or inactive.

Bioinformatic datasets. Three popular bioinformatic datasets are: DD [204], ENZYMES [183]
and PROTEINS [183]. DD is a data set containing protein structures grouped into 2 cate-
gories (enzyme and non-enzyme). ENZYMES contains graphs of protein tertiary enzyme
structures with the task of assigning each enzyme to one of 6 levels. Similarly, PROTEINS

contains protein graphs classified into either enzyme or non-enzyme.

Computer vision datasets. Three common computer vision datasets are: Fingerprint [202],
FIRSTMM-DB [203] and Letter (low, med, high) [202]. Fingerprint contains fingerprint
graphs across four classes: arch, left, right, and whorl. FIRSTMM-DB contains object
point clouds belonging to an object ontology of 11 categories. Letter contains 3 datasets
and 15 character classes with varying levels of distortion (low, med, high) added to letter
graphs.

Social network datasets. Common social network datasets include: COLLAB [4], Deezer
Ego-Nets [205], Github Stargazers [205], IMDB (BINARY, MULTI) [208], REDDIT (BI-
NARY, 5K, 12K, Threads) [208, 205] and Twitch Ego-Nets [205]. COLLAB is a collab-
oration dataset of ego-networks across 3 domains of physics. Deezer Ego-Nets contains
user ego-nets across 2 genders from the Deezer music service. Github Stargazers contains
graphs of developers who starred either machine learning or web development reposito-
ries. IMDB BINARY contains ego-network graphs representing actors and their collabo-
rations across 2 movie genres. IMDB MULTI extends IMDB BINARY with more graphs
and 3 movie genres. REDDIT-BINARY contains thread graphs across two content classes
(discussion and QA based). REDDIT MULTI-5K contains thread graphs across 5 Reddit
thread types. REDDIT MULTI-12K extends REDDIT-5K, containing online discussion
thread graphs across 11 classes. REDDIT Threads contains thread graphs across 2 graph
classes (discussion, non-discussion). Twitch Ego-Nets contains ego graphs across 2 classes
of Twitch users.

5.3 Constructing MalNet

5.3.1 Collecting Candidate Graphs

The first step in constructing MALNET-GRAPH was to identify a source of graph containing
the desired properties outlined in Section 5.2. We determined that the natural abundance,
large graph size, and class diversity provided by function call graphs (FCGs) make them
an ideal source of graphs. While FCGs, which represent the control flow of programs (see
Figure 5.3), can be statically extracted from many types of software (e.g., EXE, PE, APK),

96

we use the Android ecosystem due to its large market share [209], easy accessibility [210]
and diversity of malicious software [211]. With the generous permission of the AndroZoo
repository [212, 210], we collected 1,262,024 Android APK files, specifically selecting
APKs containing both a family and type label obtained from the Euphony classification
structure [186]. This process took about a week to download and 10TB in storage space
when using the maximum allowed 40 concurrent downloads. In addition, we spent about
1 month collecting raw VirusTotal (VT) reports to release with MALNET-GRAPH, through
VT’s academic access, which allows 20k queries per day. Each VT report contains up to
70 antivirus labels per graph.

5.3.2 Processing the Graphs

Once the APK files and labels were collected, we extract the function call graphs by run-
ning the files through Androguard [213], which statically analyzes the APK’s DEX file.
Distributed across Google Clouds General-purpose (N2) machine with 16 cores running
24 hours a day, the process took about 1 week to extract the graphs. We leave each graph
in its original state—retaining its edge directionality, disconnected components and node
isolates (i.e., single nodes with no incident edges). On average, each graph has 15, 378

nodes and 35, 167 edges; and typically contains a single giant connected component, many
small disconnected components, and numerous node isolates. Table 5.1 describes the 10
graph types (out of 47) that have the highest number of graphs. Table 5.4 provides a full
analysis on all graph type. Each graph is stored in a standard edge list format for its wide
support, readability, and ease of use. In total, the graphs’ edge list files consume over 443
GB of hard disk space. Since we are dealing with highly malicious software, our goal
is to mitigate the risk of releasing information that could potentially be used to reverse
engineer malware. Thus, we numerically relabel the nodes of each graph, removing any
associated attribute information, which makes reverse engineering highly unlikely. How-
ever, malicious actors could develop new variants of detection-resistant malware that looks
structurally similar to benign function call graphs, by gleaning graph structure knowledge
from MALNET-GRAPH in the absence of node and edge labels.

5.3.3 MalNet-Tiny

We construct MALNET-GRAPH-TINY, containing 5, 000 graphs across balanced 5 types.
In addition, we limit each graph to contain at most 5k nodes so that the dataset is truly
“tiny”. The goal of MALNET-GRAPH-TINY is to enable users to rapidly prototype new
ideas, since it requires only a fraction of the time needed to train a new model. MALNET-

97

GRAPH-TINY is released alongside the full dataset at https://mal-net.org.

5.3.4 Online Exploration of the Data

To assist researchers and practitioners in exploring MALNET-GRAPH, we have designed
and developed MALNET-GRAPH EXPLORER, an interactive graph exploration and visual-
ization tool. It runs on most modern web browsers (Chrome, Firefox, Safari, and Edge),
platforms (Windows, Mac OS, Linux), and devices (Android and iOS). Our goal is to en-
able users to easily explore the data before downloading. MALNET-GRAPH EXPLORER’s
user interface uses a responsive design that automatically adjusts its component layout,
based on the users’ device types and screen resolutions. MALNET-GRAPH EXPLORER is
available online at: https://mal-net.org.

5.4 MalNet for New Research & Discoveries

MALNET-GRAPH is substantially larger than existing graph databases used for graph rep-
resentation learning research, with many more graphs, much larger graphs, and many
more classes of graphs. Such unprecedented advancements provides exciting opportuni-
ties to make new discoveries and explore new research directions previously not possi-
ble. In this section, we present our findings to demonstrate such possibilities. We discuss
the experimental setup below, followed by an overview of the graph representation tech-
niques in Section 5.4.1. Section 5.4.2 discusses the new discoveries we found by study-
ing MALNET-GRAPH; and Section 5.4.3 highlights new research directions enabled by
MALNET-GRAPH.

Experimental Setup. We divide MALNET-GRAPH into three stratified sets of data: train-
ing, validation and test, with a split of 70/10/20, respectively; repeated for graph type,
family and MALNET-TINY labels. Each model is evaluated on its macro-F1 score, how-
ever, we report three performance metrics—macro-F1, precision and recall, as is typical
for highly imbalanced datasets [194, 214]. We perform our experiments in Python3 using
a DGX A-100 containing 128 CPU cores and 8 A-100 GPUs.

5.4.1 Graph Representation Techniques

We present results for 7 strong, recent, scalable, and readily available graph representa-
tion techniques [215, 205]. Specifically, we evaluate 2 graph neural network (GNN) mod-
els [216, 217] and 5 data mining techniques [179, 181, 218, 219]. We leave the graph in
its natural state for each GNN i.e., directed graph with isolates; and follow recommended

98

https://mal-net.org
https://mal-net.org

preprocessing steps from the paper of each data mining technique. In addition, each data
mining embedding techniques uses a random forest model for the task of graph classi-
fication, where we run a grid search across the validation set to identify the number of
estimators ne ∈ [1, 5, 10, 25, 50] and tree depth td ∈ [1, 5, 10, 20]. All hyperparameters are
individually tuned for type, family and tiny classification levels. We briefly summarize each
method and its configuration below:

1. GCN [216] is a graph neural network which learns network embeddings by aggregating
node features over neighborhoods. Following [217], we use 5 GNN layers and an Adam
optimizer [220]. We set node features using LDP [179], and add self loops which has
been shown to improve performance [221]. We tune hyperparameters for (1) the number
of hidden units ∈ {32, 64} and (2) the learning rate ∈ {0.001, 0.0001}, repeated for both
type and family classification levels. We find that 64 units with a learning rate of 0.0001

performs best. Running this search took over 26 days using the Nvidia DGX A100,
their most powerful commercial GPU server.

2. GIN [217] is a state-of-the-art GNN with strong theoretical backing. Following [217],
we set ε = 0, use 5 GNN layers, and an Adam optmizer [220]. We set node features us-
ing LDP [179], and add self loops which has been shown to improve performance [221].
We tune hyperparameters for (1) the number of hidden units ∈ {32, 64} and (2) the
learning rate ∈ {0.001, 0.0001}. We find that 64 units with a learning rate of 0.0001

performs best. Running this search took over 23 days using the Nvidia DGX A100.

3. LDP [179] is a simple representation scheme that summarizes each node and its 1-hop
neighborhood using using 5 degree statistics. These node features are then aggregated
into a histogram where they are concatenated into feature vectors. We use the parameters
suggested in [179]. Running this method took 4 hours parallelized across all 128 CPU
cores of the Nvidia DGX A100.

4. NoG [181] ignores the topological graph structure, viewing the graph as a two-dimensional
feature vector of the node and edge count. Running this method took approximately 1
hour parallelized across all 128 CPU cores of the Nvidia DGX A100.

5. Feather [218] is a more complex representation scheme that uses characteristic func-
tions of node features with random walk weights to describe node neighborhoods. We
perform a search over the key order ∈ {4, 5, 6}parameter, which controls how much in-
formation is seen from higher order neighborhoods. We find that an order of 5 performs
best. For the remaining parameters, we use the values suggested in [218]. Running this
search took over 19 hours parallelized across all 128 CPU cores of the Nvidia DGX
A100.

99

6. Slaq-VNGE [219] approximates the spectral distances between graphs based on the
Von Neumann Graph Entropy (VNGE), which measures information divergence and
distance between graphs [222]. We perform a search over 2 key parameters: number of
random vectors nv ∈ {10, 15, 20} and the number of Lanczos steps s ∈ {10, 15, 20}.
We find that nv = 15 and s = 15 performs best. For the remaining parameters, we use
the values suggested in [219]. Running this search took 8 hours parallelized across all
128 CPU cores of the Nvidia DGX A100.

7. Slaq-LSD [219] approximates NetLSD, which measures the spectral distance between
graphs based on the heat kernel [223]. We perform a search over 2 key parameters: num-
ber of random vectors nv ∈ {10, 15, 20} and number of Lanczos steps s ∈ {10, 15, 20}.
We find that nv = 20 and s = 20 performs best. For the remaining parameters, we use
the values suggested in [219]. Running this search took 8 hours parallelized across all
128 CPU cores of the Nvidia DGX A100.

Limitations. We tested a number of alternative graph representation techniques and de-
cided to exclude them—methods based on kernal [224, 225, 226, 226], spectral [227, 223,
228, 229, 230] and document embedding [231, 232]—as they were computationally pro-
hibitive for the scale of MALNET-GRAPH, making it infeasible to run the techniques over
the full dataset or perform parameter selection. We also note that methods that work well on
other datasets may not work well on MALNET-GRAPH due to its larger scale and different
structural properties (see Table 6.1); vice-versa, methods that work on MALNET-GRAPH

may not transfer well to other datasets. We hope MALNET-GRAPH will inspire the release
of additional large-scale datasets in the call graph domain and other novel application areas,
which will help enable researchers to develop and evaluate methods that generalize across
domains.

5.4.2 Enabling New Discoveries

Current graph representation research uses datasets that are significantly smaller in scale,
and much less diverse compared to MALNET-GRAPH. In light of this, we want to study
what new discoveries can be made, that were previously not possible due to dataset limita-
tions. For example, what is the impact of class imbalance and diversity in the classification
process? We synthesized our findings into the following 2 major discoveries (D1-D2).

D1. Less Diversity, Better Performance. Comparing methods in Table 5.3 across mal-
ware type (low diversity, with 47 classes) and family (high diversity, with 696 classes),
the classification task becomes increasingly difficult as diversity and data imbalance
increase. This trend is visible across all 7 graph representation methods. For the best

100

Type Family TINY

Method Macro-F1 Precision Recall Macro-F1 Precision Recall Accuracy

Feather [218] .41 .71 .35 .34 .56 .29 .86

LDP [179] .38 .69 .31 .34 .55 .28 .86

GIN [217] .39 .57 .36 .28 .32 .28 .90

GCN [216] .38 .51 .35 .21 .24 .21 .81

Slaq-LSD [219] .33 .62 .26 .24 .42 .19 .76

NoG [181] .30 .62 .25 .25 .42 .21 .77

Slaq-VNGE [219] .04 .07 .04 .01 .01 .01 .53

Table 5.3: Comparison of macro-F1, precision and recall scores achieved by 7 methods at the type
(low diversity, with 47 classes) and family (high diversity, with 696 classes) and tiny (5k graphs
across 5 balanced classes) classification levels. Comparing methods across type and family, the
classification task becomes increasingly difficult as diversity and data imbalance increase.

performing method, Feather, the macro-F1 score drops from 0.41 (type) to 0.34 (fam-
ily). This matches our intuition from the “tiny” experiments in Table 5.3, which shows
strong method performance when evaluating on a small subset of MALNET-GRAPH,
containing 5 well-balanced types.

D2. Simple Baselines Surprisingly Effective. Both NoG and LDP use basic graph statis-
tics. Given the simplicity of these methods, they perform remarkably well, often out-
performing or matching the performance of more complex methods. For example,
in Table 5.3 we can see that LDP ties for the best performing family classification
method, achieving a macro-F1 score of 0.34, while beating significantly more com-
plex methods e.g., GIN, GCN, Slaq-LSD. A similar trend is found in type level clas-
sification results where LDP outperforms SLAQ-LSD and performs on par with GIN
and GCN, despite being simpler and significantly faster than all 3 methods. Using
small graph databases, earlier work [179] suggested the potential merits of consider-
ing simpler approaches. For the first time, using the largest graph database to date,
our result confirms that many current techniques in the literature do not well capture
non-attributed graph topology.

5.4.3 Enabling New Research Directions

The unprecedented scale and diversity of MALNET-GRAPH opens up new exciting research
opportunities for the graph representation community. Below, we present four promising
directions (R1-R4).

101

Malware type (decreasing class size)

Ad
wa
re
Tro
jan
Be
nig
n

Ris
kw
are

Ad
dis
pla
y
Sp
r

Sp
yw
are
Ex
plo
it

Do
wn
loa
de
r

Sm
sse
nd
++
Tro
jan Tro

j

Sm
sse
nd

Cli
cke
r++
Tro
jan

Ad
sw
are

Ma
lwa
re

Ad
wa
re+
+A
dw
are Ro

g
Sp
y

Mo
nit
or

Ra
ns
om
++
Tro
jan

Ba
nk
er+
+T
roj
an Trj

Gr
ay

Adw
are

++G
ray

ware
++V

irus

Fa
ke
ins
t++
Tro
jan

Ma
lwa
re+
+T
rj

Ba
ckd
oo
r

Dr
op
pe
r++
Tro
jan

Tro
jan
do
wn
loa
de
r

Ha
ckt
oo
l

Fa
ke
ap
p

Cli
ckf
rau
d+
+R
isk
wa
re

Ad
loa
d

Ad
dis
pla
y+
+A
dw
are

Ad
wa
re+
+V
iru
s
Cli
cke
r

Fa
ke
ap
p+
+T
roj
an

Ris
kw
are
++
Sm
sse
nd

Ro
otn
ik+
+T
roj
an
Wo
rm

Fa
ke
an
gry Vir

us

Tro
jan
dro
pp
er

Ad
wa
rea
re

Riskt
ool

++R
iskw

are
++V

irus

Sp
y+
+T
roj
an
Cli
ck

M
et
ho
d

Classification Performance: Graph Type
Feather

NoG

GIN

LDP

S-VNGE

S-LSD

GCN

Figure 5.4: Class-wise comparison of model predictions where a darker cell represents a higher F1
score. We observe that certain classes are more challenging to classify than others.

R1. Class Hardness Exploration. Because of MALNET-GRAPH’s large diversity, it is
now possible for researchers to explore why certain classes are more challenging to
classify than others. For example, Figure 5.4 shows Malware++Trj significantly out-
performing both Troj and Adsware, which contain many more examples. This result
is surprising, and provides strong impetus for additional research into class hardness,
such as: (a) investigating whether existing methods are flexible enough to represent the
diverse graph structures; and (b) inviting researchers to study the similarities across
class types (e.g. merge Spr and Spyware). To support further development in this
challenging area, we release the raw VirusTotal reports containing up to 70 labels per
graph.

R2. Imbalanced Classification Research. The natural world often follows a long-tailed
data distribution where only a few classes account for most of the examples [194]. As
evidenced in discovery D1, the long-tail often causes classifiers to perform well on
the majority class, but poorly on rare ones. Unfortunately, imbalanced classification
research in the graph domain has yet to receive much attention, largely because no
datasets existed to support the research. By releasing MALNET-GRAPH, the largest
naturally imbalanced database to date, we hope foster new interest in this important
area.

R3. Reconsidering Merits of Simpler Graph Classification Approaches. Our discovery
in D2 indicates that simpler methods can match or outperform more recent and sophis-
ticated techniques, suggesting that current techniques aiming to capture graph topol-
ogy are not yet well-reflected for non-attributed graphs, echoing results from [179].
More broadly, our discovery demonstrates—for the first time—such phenomenon at
the unprecedented scale and diversity offered by MALNET-GRAPH. We believe our
results will inspire researchers to reconsider the merits of simpler approaches and

102

classic techniques, and to build on them to reap their benefits.

R4. Enabling Explainable Research. In Figure 5.4, we observe that certain represen-
tation techniques better capture particular graph types. For example, Feather, GIN
and GCN significantly outperforms other methods on Clicker++Trojan. This is an
interesting result, as it could provide insight into when one technique is preferred
over another (e.g., local neighborhood structure, global graph structure, graph mo-
tifs). We believe that the wide range of graph topology and substructures contained in
MALNET-GRAPH’s nearly 700 classes will enable new explainability research.

5.5 Conclusion

The study of graph representation learning is a critical tool in the characterization and
understanding of complex interconnected systems. Currently, no large-scale database exists
to accurately assess the strengths and weaknesses of these techniques. To address this, we
contribute a new large-scale database—MALNET-GRAPH—containing 1, 262, 024 graphs,
averaging over 15k nodes and 35k edges per graph, across a hierarchy of 47 types and 696

families. We hope MALNET-GRAPH will become a central resource for a broad range of
graph research. The database is available at www.mal-net.org.

103

www.mal-net.org

Nodes Edges Avg. Degree

Type # graphs # fams. min mean max std min mean max std min mean max std

Adware 884K 250 7 14K 211K 16K 4 31K 605K 38K 0.50 2.21 6.24 0.36
Trojan 179K 441 5 15K 228K 18K 4 34K 530K 42K 0.58 2.05 6.74 0.52
Benign 79K 1 5 35K 552K 30K 3 79K 2M 74K 0.58 2.13 5.30 0.31
Riskware 32K 107 5 12K 173K 16K 4 30K 334K 39K 0.58 2.16 5.42 0.56
Addisplay 17K 38 37 13K 98K 15K 37 28K 246K 34K 0.92 1.97 4.38 0.37
Spr 14K 46 12 28K 169K 21K 7 67K 369K 52K 0.58 2.27 4.70 0.44
Spyware 7K 19 12 5K 55K 6K 7 11K 121K 14K 0.58 1.95 4.27 0.46
Exploit 6K 13 19 24K 102K 14K 14 45K 250K 30K 0.74 1.88 3.34 0.33
Downloader 5K 7 37 20K 107K 28K 37 46K 321K 63K 0.96 1.68 3.53 0.66
Smssend++Trojan 4K 25 16 34K 147K 19K 13 82K 387K 48K 0.81 2.39 3.78 0.23
Troj 3K 36 14 6K 64K 8K 11 15K 115K 18K 0.79 1.98 5.60 0.52
Smssend 3K 12 15 20K 111K 14K 12 49K 337K 38K 0.80 2.34 4.61 0.47
Clicker++Trojan 3K 3 220 6K 29K 3K 471 14K 72K 7K 1.52 2.33 2.92 0.18
Adsware 3K 16 368 11K 53K 13K 564 26K 143K 28K 1.02 2.19 4.27 0.26
Malware 3K 19 6 8K 119K 13K 5 16K 286K 29K 0.83 1.90 3.97 0.67
Adware++Adware 3K 2 192 9K 55K 6K 289 20K 138K 16K 1.49 2.16 3.17 0.27
Rog 2K 22 26 15K 102K 19K 31 35K 232K 46K 0.91 2.05 4.79 0.49
Spy 2K 7 48 22K 107K 15K 44 49K 271K 40K 0.92 2.17 3.07 0.25
Monitor 1K 5 329 4K 41K 5K 580 7K 102K 12K 1.53 1.83 3.09 0.21
Ransom++Trojan 1K 7 556 51K 139K 22K 965 115K 319K 48K 1.59 2.26 2.59 0.21
Banker++Trojan 1K 6 29 33K 103K 16K 36 72K 237K 38K 1.22 2.15 2.99 0.24
Trj 940 18 29 13K 171K 16K 36 30K 402K 39K 1.15 2.20 4.44 0.49
Gray 922 10 51 16K 66K 13K 56 39K 153K 31K 0.88 2.09 4.33 0.58
Adware++Grayware++Virus 835 4 22 6K 84K 13K 20 14K 193K 29K 0.86 2.79 3.17 0.34
Fakeinst++Trojan 718 10 51 15K 94K 17K 58 37K 229K 44K 0.99 2.12 2.84 0.48
Malware++Trj 609 1 52K 52K 56K 596 118K 119K 128K 1K 2.28 2.28 2.29 0
Backdoor 602 10 25 13K 146K 22K 21 33K 427K 57K 0.84 2.19 3.55 0.37
Dropper++Trojan 592 8 47 5K 67K 7K 50 11K 175K 18K 1.06 1.98 3.92 0.70
Trojandownloader 568 7 1K 38K 102K 19K 2K 86K 258K 45K 1.34 2.19 2.54 0.21
Hacktool 542 7 668 17K 41K 9K 2K 37K 92K 20K 1.63 2.21 3.64 0.25
Fakeapp 425 5 24 4K 50K 7K 21 8K 107K 16K 0.88 1.67 2.79 0.37
Clickfraud++Riskware 369 5 2K 18K 20K 2K 4K 38K 43K 5K 1.95 2.13 2.25 0.04
Adload 333 4 2K 19K 53K 18K 4K 48K 149K 48K 1.46 2.29 3.13 0.40
Addisplay++Adware 294 1 3K 20K 50K 9K 6K 41K 108K 20K 1.65 2.03 2.45 0.21
Adware++Virus 274 9 38 15K 59K 15K 38 33K 138K 35K 1 2.22 3.17 0.54
Clicker 265 5 47 3K 75K 7K 43 6K 190K 17K 0.91 1.62 3.32 0.51
Fakeapp++Trojan 256 1 44 21K 72K 15K 39 41K 162K 34K 0.88 1.74 2.30 0.27
Riskware++Smssend 247 7 12 2K 60K 6K 7 5K 154K 14K 0.58 1.68 3 0.45
Rootnik++Trojan 223 5 210 16K 84K 21K 395 39K 197K 50K 1.15 2.59 3.21 0.47
Worm 220 7 64 14K 94K 15K 78 31K 204K 34K 0.99 1.99 3.42 0.40
Fakeangry 211 2 516 6K 98K 11K 946 15K 279K 29K 1.70 2.35 3.29 0.27
Virus 191 3 681 15K 80K 19K 1K 35K 177K 46K 1.32 2.12 3.18 0.33
Trojandropper 178 4 220 20K 78K 18K 236 39K 185K 39K 1.03 1.83 4.36 0.32
Adwareare 152 3 893 26K 57K 14K 2K 60K 144K 32K 1.88 2.25 2.60 0.20
Risktool++Riskware++Virus 152 3 37 16K 65K 16K 37 36K 158K 37K 1 1.92 3.17 0.48
Spy++Trojan 119 5 54 31K 118K 25K 66 75K 293K 61K 1.22 2.31 3.26 0.37
Click 113 1 2K 4K 12K 2K 4K 8K 26K 4K 1.80 2.04 2.74 0.21

Table 5.4: Descriptive statistics for each graph type in MALNET-GRAPH.

104

CHAPTER 6
A LARGE-SCALE IMAGE DATABASE OF MALICIOUS SOFTWARE

Computer vision is playing an increasingly important role in automated malware detec-
tion with the rise of the image-based binary representation. These binary images are fast
to generate, require no feature engineering, and are resilient to popular obfuscation meth-
ods. Significant research has been conducted in this area, however, it has been restricted to
small-scale or private datasets that only a few industry labs and research teams have access
to. This lack of availability hinders examination of existing work, development of new
research, and dissemination of ideas. We release MALNET-IMAGE, the largest public cy-
bersecurity image database, offering 24×more images and 70×more classes than exist-
ing databases (available at https://mal-net.org). MALNET-IMAGE contains over 1.2
million malware images—across 47 types and 696 families—democratizing image-based
malware capabilities by enabling researchers and practitioners to evaluate techniques that
were previously reported in propriety settings. We report the first million-scale malware
detection results on binary images. MALNET-IMAGE unlocks new and unique opportu-
nities to advance the frontiers of machine learning, enabling new research directions into
vision-based cyber defenses, multi-class imbalanced classification, and interpretable secu-
rity.

6.1 Introduction

Attack campaigns from criminal organizations and nation state actors are one of the most
powerful forms of disruption, costing the U.S. economy as much as $109 billion a year [242].
These cyber attacks are highly sophisticated, targeting governments and large-scale enter-
prises to interrupt critical services and steal intellectual property [59]. Defending against
these attacks requires the development of strong antivirus tools to identify new variants of
malicious software before they can infect a network. Unfortunately, as a majority of newly
identified malware is polymorphic in nature, where a few subtle source code changes re-
sult in significantly different compiled code (e.g., instruction reordering, branch inversion,
register allocation) [9, 8], the predominant signature-based form of malware detection is
rendered inert [10].

To combat these issues, the cybersecurity industry [235] has turned to image-based
malware representations as they are quick to generate, require no feature engineering, and
are resilient to common obfuscation techniques (e.g., section encryption [243]). For all

105

https://mal-net.org

Dataset Images Classes

P
ub

lic

MALNET-GRAPH 1,262,024 696

Virus-MNIST [233] 51,880 10

Malimg [234] 9,458 25

P
ri

va
te

Stamina [235] 782,224 2

McAfee [236] 367,183 2

Kancherla [237] 27,000 2

Choi [238] 12,000 2

Fu [239] 7,087 15

Han [240] 1,000 50

IoT DDoS [241] 365 3

Table 6.1: MALNET-GRAPH has 1.2M images across a hierarchy of 47 types and 696 families.

of these reasons, image-based malware detection and classification research has surged
in popularity. Unfortunately, a majority of this research uses small-scale or private data
repositories, making it increasingly difficult to characterize and differentiate existing work,
develop new research methodologies, and disseminate new ideas [235, 244, 245, 239, 236,
240, 246, 247, 243, 234, 248]. To address these issues, we constructed MALNET-IMAGE,
the first large-scale ontology of malicious software images. Through MALNET-IMAGE, we
make three major contributions:

• MALNET-IMAGE: Largest Cybersecurity Image Database. MALNET-IMAGE is the
largest public cybersecurity image database, containing over 1.2 million software images
across a hierarchy of 47 types and 696 families. Compared to the next large public
database [233], MALNET-IMAGE offers 24× more images and nearly 70× more classes
(see Table 6.1). By releasing the first database of its kind, MALNET-IMAGE enables
new and important discoveries in malware detection and classification research that was
previously restricted to a few industry labs and research teams. We release MALNET-
IMAGE with a CC-BY license, enabling researchers and practitioners to share and adapt
the database according to their needs. We release the code containing experiments and
dataset creation on Github: https://github.com/safreita1/malnet-image.

• Democratizing Image-Based Malware Capabilities. Researchers and practitioners can
now conduct experiments on an industry scale dataset, evaluating techniques that were
previously reported in propriety settings. We report the first public large-scale malware

106

https://github.com/safreita1/malnet-image

detection results on binary images, where we are able to identify malicious files with
an AUC of 0.94. MALNET-IMAGE also enables new research into multi-class malware
classification using binary-images (e.g., is this Ransomware or Spyware?), a critical tool
in formulating a defense response. Our first of their kind results demonstrate that a
ResNet18 model can classify 47 types and 696 families of malware with a macro-F1
score of 0.49 and 0.45, respectively.

• Enabling New Research Directions. MALNET-IMAGE offers new and unique opportu-
nities to advance the frontiers of cybersecurity research. In particular, MALNET-IMAGE

offers researchers a chance to study imbalanced classification on a large-scale cyberse-
curity database with a natural imbalance ratio of 16, 901×; and explore explainability
research in a high impact domain, where it is critical that security analysts can interpret
and trust the model.

6.2 Properties of MalNet-Image

We begin by analyzing 5 key properties of the MALNET-IMAGE database—(1) size, (2)
labeling (3) data diversity, (4) class imbalance and (5) cybersecurity applications.

Size. MALNET-IMAGE is the largest cybersecurity image dataset ever released, containing
1,262,024 binary images across 47 types and 696 families of malware. Table 6.2 pro-
vides statistics on the number of images and families contained in each type of malware.
MALNET-IMAGE offers over 24× more images and nearly 70× more classes than the
largest alternative public binary-image database; and 479, 800 more images and 694 more
classes than Stamina [235], the largest private binary image database. By enabling re-
searchers and practitioners to conduct experiments at an industry scale, MALNET-IMAGE

offers exciting new opportunities to develop state-of-the-art malware detection and classi-
fication techniques.

Image Labels. Each piece of malware (thus its image representation in MALNET-IMAGE)
is assigned both a general malware “type” (e.g., Backdoor), and a specialized malware
“family” (e.g., Droidkungfu), using Euphony [186], a state-of-the-art malware labeling
system that aggregates and learns from the labelling results of up to 70 antivirus vendors
from VirusTotal [187].

Data Diversity & Imbalance. With 47 malware types and 696 malware families, MALNET-
IMAGE is one of the most diverse image databases. In Figure 6.1, we can see that the class
distribution is highly imbalanced across image type and family, with imbalance ratios of
7,827× and 16,901×, respectively. This long-tailed distribution is a common property of

107

10k

100k

100

10

1k

1M

10k

100k

100
0 0 70046

1k

1M
Images

Type Index Family Index

Image Distribution
Across 47 Types

Image Distribution
Across 696 Families

7,827x imbalance 16,901x imbalance

Figure 6.1: Type and family labels have imbalance ratios of 7, 827× and 16, 901×, respectively.

many real-world datasets, where a few of the classes contain a majority of examples [194].
Table 6.2 provides a breakdown of the number of images and families in each type.

Security Applications. Most newly identified malware samples are packed, meaning that
the binary code is obfuscated to evade signature based detection, the predominant form
of malware detection [234, 10]. Fortunately, research has shown that image-based binary
representations are resilient to common packing techniques since they typically perform a
monotonic transformation of the binaries, failing to conceal common byte patterns present
in the original binaries [234]. With the release of MALNET-IMAGE, researchers will now
have access to a critical resource to develop advanced, image-based malware detection and
classification algorithms. Like most open data resources, there is a potential for MALNET-
IMAGE to be misused by malicious actors who aim to craft new variants to evade detection.
We believe MALNET-IMAGE’s contribution to the research community significantly out-
weighs such risk.

6.3 MalNet-Image: Advancing the State-of-the-Art

Aside from MALNET-IMAGE, there are only two publicly available binary-image based
cybersecurity datasets— Malimg [234] and Virus-MNIST [233]—containing 9,458 im-
ages across 25 classes, and 51,880 images across 10 classes, respectively. In surveying
the malware detection and classification literature [234, 235, 236, 237, 238, 239, 240,
241, 249, 250, 251, 252, 253, 254, 255, 256, 247, 257, 258, 245], we observed that
almost all experiments were conducted on small-scale or private data. As the field ad-
vances, large-scale public databases are necessary to develop the next generation of algo-
rithms. In Table 6.1, we compare MALNET-IMAGE with other public and private cyber-
security image datasets. We find that that MALNET-IMAGE offers 24× more images and

108

Type # Images # Families

Adware 884K 250
Trojan 179K 441
Benign 79K 1
Riskware 32K 107
Addisplay 17K 38
Spr 14K 46
Spyware 7K 19
Exploit 6K 13
Downloader 5K 7
Smssend+Trojan 4K 25
Troj 3K 36
Smssend 3K 12
Clicker+Trojan 3K 3
Adsware 3K 16
Malware 3K 19
Adware+Adware 3K 2
Rog 2K 22
Spy 2K 7
Monitor 1K 5
Ransom+Trojan 1K 7
Banker+Trojan 1K 6
Trj 940 18
Gray 922 10
Adware+

Grayware+Virus
835 4

Type # Images # Families

Fakeinst+Trojan 718 10
Malware+Trj 609 1
Backdoor 602 10
Dropper+Trojan 592 8
Trojandownloader 568 7
Hacktool 542 7
Fakeapp 425 5
Clickfraud+

Riskware
369 5

Adload 333 4
Addisplay+Adware 294 1
Adware+Virus 274 9
Clicker 265 5
Fakeapp+Trojan 256 1
Riskware+Smssend 247 7
Rootnik+Trojan 223 5
Worm 220 7
Fakeangry 211 2
Virus 191 3
Trojandropper 178 4
Adwareare 152 3
Risktool+Riskware
+Virus

152 3

Spy+Trojan 119 5
Click 113 1

Table 6.2: The number of images and families in each type of malware in MALNET-GRAPH.

109

Figure 6.2: Left: Android DEX file structure, composed of three major components—(1) header,
(2) ids, and (3) data. Right: binary image representation of the DEX file.

70× the classes, compared to the largest alternative public binary image database (Virus-
MNIST [233]); and 479, 800 more images and 694 more classes than the largest private
database (Stamina [235]). We do not compare against repositories of malicious binaries
such as AndroZoo [210], AMD [208], Microsoft-BIG [259], Malicia [260], VirusShare,
and VirusTotal in this discussion, as none of them are readily available to use. To put it
in perspective, gathering the labels, downloading and processing the data, and preparing
MALNET-IMAGE took months of processing and preparation.

6.3.1 Constructing MalNet-Image

MALNET-IMAGE is an ambitious project to collect and process over 1.2 million binary
images, and is a major extension to the graph representation learning database MAL-
NET [261], offering significant new malware detection capabilities. Below, we describe
the provenance and construction of MALNET-IMAGE.

Collecting and Processing Candidate Images. We construct MALNET-IMAGE using the
Android ecosystem due to its large market share [209], easy accessibility [210] and diver-
sity of malicious software [211]. With the generous permission of the AndroZoo repos-
itory [212, 210], we collected 1,262,024 Android APK files, specifically selecting APKs
containing both a family and type label obtained from the Euphony classification struc-
ture [186] (APKs available from AndroZoo repository).

Once the APK files and labels were gathered, the first step in constructing the image

110

"Coarser" texture

Adware-Adcolony

"Finer" texture

Trojan-Adend

Malware Images with Varying "Texture"

Figure 6.3: Images of two malware types with different “texture”. Left: the Trojan image is more
“fine-grained”. Right: the Adware image is more “coarse”. Malware images belonging to the same
type or family often appear visually similar in layout and texture, whereas images across types and
families contain noticeable differences in layout and texture.

representation was to extract the DEX file (bytecode) from each Android APK. The ex-
tracted DEX file was then converted into a 1D array of 8 bit unsigned integers. Each entry
in the array is in the range [0, 255] where 0 corresponds to a black pixel and 255 a white
pixel. Once in array form, each binary goes through a 3-stage conversion conversion—(1)
converting the 1D array to a 2D image, (2) encoding semantic information into the RGB
channels, and (3) scaling the images to a standard size. Distributed across Google Cloud’s
General-purpose (N2) machine with 16 cores running 24 hours a day, this process took
approximately a week. We release the source code use to process the APKs on Github
https://github.com/safreita1/malnet-image, and describe each step in detail
below.

Converting to a 2D representation. We convert the 1D byte array into a 2D array using
standard linear plotting where the width of the image is fixed and the height is allowed to
vary based on the file size. We use the same image width proposed in the seminal work
[243] (and follow up work [262, 263, 264, 265]), and scale each image to 256× 256 using
a standard Lanczos filter from the Pillow library. In Figure 6.3, we show images of two
malware types with different “texture” [243]. On the left, the Trojan image is more “fine-
grained”; while on the right, the Adware image is more “coarse”. In addition, each section
in the malware image can have a distinctive texture. Looking at the Trojan image (Fig-
ure 6.3, left), we can see that the identifier & definitions section (blue) has a unique pattern
that repeats vertically, whereas the data section (green) appears more random. Furthermore,
the texture within each section can vary, as observed by the 3 distinct subsections within the

111

https://github.com/safreita1/malnet-image

Figure 6.4: MALNET-IMAGE EXPLORER. An exploration panel on the left allows users to select
from the available images types and families. Users can then visually the image on the right.

data section of the Trojan and Adware images. We observe that malware images belong-
ing to the same type or family often appear visually similar in layout and texture, whereas
images across types and families contain noticeable differences in layout and texture.

Encoding Semantic Information. Semantics can play an important role in analyzing the
bytecode of an application. For example, a randomly chosen byte could be an ascii char-
acter, opcode or part of a pointer address. By coloring each byte according to its use, the
image has an added layer of semantic information on top of the raw bytecode. While a
variety of techniques can be used to encode semantic information into the image, there is
currently no accepted standard. We follow [236], and encode the semantic information
by assigning each byte to a particular RGB color channel depending on its position in
the DEX file structure—(i) header, (ii) identifiers and class definitions, and (iii) data (see
Figure 6.2). To remove this layer of semantic encoding, the images can be converted to
grayscale by combining each of the channels.
MalNet-Image Tiny. We construct MALNET-IMAGE TINY, containing 61, 201 training,
8, 743 validation and 17, 486 test images, for type level classification experiments by re-
moving the 4 largest types in MALNET-IMAGE. The goal of MALNET-IMAGE TINY is
to enable users to rapidly prototype new ideas, since it requires only a fraction of the time
needed to train a new model. MALNET-IMAGE TINY is released alongside the full dataset
at https://mal-net.org.

6.3.2 Interactive Visual Explorer for MALNET-IMAGE

We develop MALNET-IMAGE EXPLORER, an interactive image exploration and visualiza-
tion tool that enables researchers and practitioners to easily study the data without installa-

112

https://mal-net.org

tion or download. Figure 6.4 shows MALNET-IMAGE EXPLORER’s desktop web interface
and its main components—(1) a hierarchical exploration panel on the left that allows the
user to select from the available image types and families; and (2) the image visualization
on the right. MALNET-IMAGE EXPLORER’s user interface uses a responsive design that
automatically adjusts its component layout, based on the users’ device types and screen res-
olutions. MALNET-IMAGE EXPLORER is available online at: https://mal-net.org.

6.4 MalNet-Image Applications

MALNET-IMAGE offers new and unique opportunities to advance the frontiers of cyberse-
curity research. As examples, we show three exciting new applications made possible by
the MALNET-IMAGE database—(1) as a state-of-the-art cybersecurity image benchmark
in Section 6.4.1; (2) as the first large-scale public analysis of malicious software detec-
tion using binary images in Section 6.4.2; and (3) how to categorize high-risk malware
threats (e.g., is this Ransomware or Spyware?) in Section 6.4.3. Then, in Section 6.4.4 we
highlight new research directions enabled by MALNET-IMAGE.

Application Setup. We divide MALNET-IMAGE into three stratified sets of data, with a
training-validation-test split of 70-10-20 respectively; repeated for both type and family
labels (suggested splits available at https://mal-net.org). In addition, we conduct
malware detection experiments by grouping all 46 malicious software images into one type
while the benign type maintains its original label. We evaluate 3 common architectures—
ResNet [266], DenseNet [267] and MobileNet [268], based on its macro-F1 score, as is
typical for highly imbalanced datasets [194, 214, 261]. Each model is trained for 100
epochs using cross entropy loss (unless specified otherwise) and an Adam optimizer on an
Nvidia DGX-1 containing 8 V100 GPUs and 512GB of RAM using Keras with a Tensor-
flow backend.

6.4.1 Application 1: Benchmarking Techniques

Leveraging the unprecedented scale and diversity of MALNET-IMAGE, we evaluate nu-
merous malware detection and classification techniques that have previously been studied
using only private or small-scale databases. Specifically, we evaluate recent techniques in-
cluding: (a) semantic information encoding via colored channels, (b) model architecture,
(c) model pretraining, (d) imbalanced classification techniques, and (e) the performance of
MALNET-IMAGE TINY, a small-scale version of MALNET-IMAGE. We detail the setup,
results, and analysis of each experiment below.

113

https://mal-net.org
https://mal-net.org

Binary Type Family

Model Params MFlops F1 Prec. Recall F1 Prec. Recall F1 Prec. Recall

ResNet18 12M 1,820 .86 .89 .84 .47 .56 .42 .45 .54 .42

ResNet50 26M 3,877 .85 .91 .81 .48 .57 .44 .47 .54 .44

ResNet101 45M 7,597 .86 .88 .84 .48 .59 .44 .47 .54 .44

DenseNet121 7.9M 2,872 .86 .90 .83 .47 .56 .43 .46 .53 .44

DenseNet169 14M 3,403 .86 .89 .84 .48 .57 .43 .46 .55 .43

MobileNetV2 (x.5) 1.9M 100 .86 .89 .83 .46 .55 .42 .45 .53 .42

MobileNetV2 (x1) 3.5M 329 .85 .89 .83 .45 .53 .42 .44 .53 .41

Table 6.3: We evaluate the performance of 3 popular architectures—ResNet, DenseNet and
MobileNetV2—on its macro-F1, macro-precision, and macro-recall. Model performance is sim-
ilar across architectures, while model size (parameters) and computational cost (MFlops) varies
widely. As a result, we conduct all additional experiments using a ResNet18 model as it provides a
strong balance between performance and training time.

Semantic Information Encoding. We evaluate the effect of information encoding in the
classification process by training two ResNet18 models—one on the RGB images, where
each byte is assigned to a particular color channel depending on its position in the DEX
file structure as proposed in [236], and another on grayscale converted images. We find no
improvement in the macro-F1 score using semantically encoded RGB images compared to
grayscale ones. 1 As there are alternative encoding techniques [236], we believe comparing
the effects of different encodings could be an interesting future research direction. Going
forward, all models are trained using grayscale images.

Evaluating Model Architectures. We evaluate malware detection and classification per-
formance on 3 popular deep learning architectures—ResNet, DenseNet and MobileNetV2—
across a variety of model sizes, using grayscale encoded images, cross entropy loss and no
model pretraining. In Table 6.3, we report the macro-F1, macro-precision, and macro-
recall of each model. We find that all models obtain similar macro-F1 scores, indicating
that a small model has enough capacity to learn the features present in the binary images.
Going forward, all experiments use a ResNet18 model due to its strong performance and
fast training time.

Transfer learning using ImageNet. We evaluate the effect of pretraining a model us-
ing datasets such as ImageNet, and then fine tuning them on binary image data to boost
malware classification performance [256, 269, 270, 271, 272]. Following prior work in
binary-image model transfer [256, 270, 272], we replace the last layer, freeze all weights

1Less than 0.001 macro-F1 score differential between grayscale and color performance

114

except for the last layer, and fine tune it on our training data. We then compare the per-
formance of the pretrained ResNet18 model to one trained from scratch. We find that the
pretrained model performs significantly worse than the one trained from scratch, with a
macro-F1 of 0.48 versus 0.86, respectively. One potential reason model pretraining is less
effective on MALNET-IMAGE, compared to previous work, is due to the large number of
images in MALNET-IMAGE’s training set. To put it in perspective, this is 89× more fine
tuning data than in [269] and 81× more than in [256].

Accounting for Class Imbalance. Given MALNET-IMAGE’s large class imbalance, we
evaluate 3 imbalanced classification techniques: (1) class reweighting with cross entropy
loss, (2) focal loss, and (3) class reweighting with focal loss; and compare this to a model
trained using cross entropy loss without class weighting. For class reweighting, each exam-
ple of a class c is weighted according to it’s effective number 1−β

1−βnc , where nc is the number
of images in class c and β = 0.999 is selected through a line search across standard val-
ues [193] of {0.9, 0.99, 0.999, 0.9999}. For focal loss [273], a regularization technique that
tackles imbalance by establishing margins based on the class size, we set the hyperparam-
eter γ = 2 as suggested in [273].

Analyzing the results, we find that cross entropy loss with class reweighting improves
the type macro-F1 score by 0.021, but lowers the binary and family classification scores
by 0.002 and 0.006, respectively. In particular, we notice that MALNET-IMAGE’s smallest
types benefit the most from class reweighting, where the Click type (113 examples), sees
its F1 score rise from 0 to 0.91. On the other hand, focal loss shows no improvement over
the baseline model, likely due to its design for use in dense object detectors like R-CNN.
Going forward, all experiments use cross entropy loss with class reweighting due to the
strong macro-F1 improvement in the smaller malware types.

MALNET-IMAGE TINY Performance. We analyze MALNET-IMAGE TINY by perform-
ing type level classification experiments using the optimal model found above—a ResNet18
trained from scratch on grayscale images using cross entropy loss and class reweighting—
where the model achieves a macro-F1 score of 0.65, macro-precision of 0.67, and a macro-
recall of 0.65. Comparing the results to MALNET-IMAGE, it is unsurprising that macro-F1
score is significantly higher 0.65 vs 0.49, given that the largest 4 types contained a signif-
icant proportion of the image diversity (based on the number of families), resulting in an
easier classification task.

Limitations. We note that methods that work well on other datasets may not work well on
MALNET-IMAGE due to inherent structural differences in the images; vice-versa, meth-
ods that work on MALNET-IMAGE may not transfer well to other datasets. We hope

115

0 .2 .4 .6 .8 1
False Positive Rate

0

.2

.4

.6

.8

1

Tr
ue
Po
si
tiv
e
R
at
e

Malware Detection ROC Curve

AUC = 0.94

Figure 6.5: Malware detection ROC curve with an AUC of 0.94, demonstrating the potential of
binary images as an effective form of malware detection.

MALNET-IMAGE will inspire the release of additional large-scale datasets in the binary
image domain, enabling researchers to develop and evaluate new methods that generalize
across important domains such as cybersecurity.

6.4.2 Application 2: Malware Detection

Researchers and practitioners can now conduct malware detection experiments on an in-
dustry scale dataset, evaluating things that were previously reported in propriety settings.
Using the model selected in Section 6.4.1—a ResNet18 model trained from scratch on
grayscale images using cross entropy loss and class reweighting—we perform an in-depth
analysis of this highly imbalanced detection problem containing 1, 182, 905 malicious and
79, 119 benign images. We find that the model is able to obtain a strong macro-F1 score of
0.86, macro-precision of 0.89 and a macro-recall of 0.84. In Figure 6.5, we further study
the model’s detection capabilities by analyzing its ROC curve. The model achieves an AUC
score of 0.94, and is able to identify 84% of all malicious files with a false positive rate of
10% (a common threshold used in security [235]). This first of its kind analysis allows
researchers insight into malware detection that is usually restricted to handful of industry
labs.

116

BenignAdwareMonitorRansom++Trojan

Visualizing Model Attention Regions

Figure 6.6: Model attention patterns across 4 types of malware (each with 2 images). Ran-
som++Trojan: narrowly focused on thin region of data section. Benign: wide range of atten-
tion across data section. Adware: attention on circular bytecode “hotspots”. Monitor: focus on
“empty” black region of data section.

6.4.3 Application 3: Malware Classification

MALNET-IMAGE opens up new research into binary images as a tool for multi-class mal-
ware classification (e.g., is this file Ransomware or Spyware?). Using the model selected
in Section 6.4.1—a ResNet18 model trained from scratch on grayscale images using cross
entropy loss and class reweighting—we perform an in-depth analysis of its multi-class clas-
sification capability across 47 types and 696 families of malware. We find the model is able
to classify the malware type and malware family with a macro-F1 score of 0.49 and 0.45,
respectively. To the best of our knowledge, this is the first time that a large-scale analysis of
malware type and family classification has been conducted, providing a new state-of-the-art
benchmark to compare against.

MALNET-IMAGE will be a valuable research tool to support the nascent and promising
research direction of analyzing attention maps for malware detection and interpretation.
Yakura et al. [274, 265] showed that specific byte sequences found in the attention map
closely correlate with malicious code payloads.

To demonstrate the potential of these techniques on MALNET-IMAGE, we use a popular
attention mechanism (i.e., Grad-Cam [275]) to highlight regions of interest across 4 types
of malware in Figure 6.6. For the Ransom++Trojan and Monitor types (left-side), we
can see that model is focused on thin regions of bytecode in the data section; while for
the Adware type (middle-right) the model is focused on two separate regions and four
circular bytecode “hotspots”. In comparison, attention patterns on Benign images (right-

117

side) are widely dispersed across the whole data section. One important observation from
Figure 6.6 is that model’s attention is focused on the data region of the image (green), as this
is where malicious payloads are typically stored. Furthermore, this type of visual analysis
significantly reduces the amount of time and effort required to manually investigate a file
by guiding security analysts to suspicious regions of the bytecode.

In Figure 6.7, we conduct an in-depth analysis into type level classification perfor-
mance through a confusion matrix heatmap. A dark diagonal indicates strong classifier
performance, where a dark off-diagonal entry indicates poor performance. Each square
in the diagonal indicates the percent of examples correctly classified for a particular mal-
ware type; and each off-diagonal row entry indicates the percent of incorrectly classified
examples for a particular malware type. Four types of malware comprise the majority of
misclassifications—Adware, Benign, Riskware and Trojan. Unsurprisingly, these are the
4 largest types of malware (based on the number of images in each class), indicating the
strong effect that data imbalance has in the malware classification process. Through the
heatmap, we can also identify potential naming disagreements between vendor labels (e.g.,
“adware” and “adsware”), which can be used as evidence for merging certain types of
malware. In addition, we can use the heatmap to view the types of malware the model
accurately detects, which is critical in assisting security analysts make informed decisions
on high risk threats.

6.4.4 Enabling New Research Directions

The unprecedented scale and diversity of MALNET-IMAGE opens up new exciting research
opportunities to the ML and security communities. Below, we present 3 promising direc-
tions (R1-R3).

R1. Advancing Vision Based Cybersecurity Research. Research into developing image-
based malware detection and classification algorithms has recently surged across in-
dustry (e.g., Intel-Microsoft collaboration on Stamina [235], security companies [233,
236]) and academia [237, 238, 239, 240, 241, 249, 250, 251, 252, 253, 254, 255,
256, 247, 257, 258, 245]. However, existing public datasets contain only a hand-
ful of classes and thousands of images, and as the field advances, larger and more
challenging datasets are needed for the next generation of models. With the release
of MALNET-IMAGE, containing over 1.2 million software images across a hierarchy
of 47 types and 696 families, researchers now have access to a critical resource to
develop and benchmark advanced image-based malware detection and classification
algorithms, previously restricted to a few industry labs and research teams.

118

R2. Extending Imbalanced Classification into a New and Diverse High-Impact Do-
main. While a large body of research has analyzed binary-images in balanced clas-
sification settings, only preliminary work has studied malware detection under data
imbalance [253] due to the limited number of classes and images available in existing
datasets. As a result, it is unknown whether many techniques may generalize to the
binary-image domain, and how they will perform in highly imbalanced classification
scenarios. We take a first step in studying this by analyzing Figure 6.7, where we
can see that classes containing only a few examples typically underperform relative
to their more populous counterparts—highlighting the significant challenge of imbal-
anced classification in the cybersecurity domain. By releasing MALNET-IMAGE, one
of the largest naturally imbalanced databases to date, we hope to foster new interest in
this important research area, enabling the machine learning community to impact and
generalize across domains.

R3. Interpretable Cybersecurity Research. Preliminary research has demonstrated the
importance of attention mechanisms in binary-image malware classification, where
extracted regions can provide strong indicators to human analysts, helping guide them
to suspicious parts of the bytecode for analysis [274, 265]. This includes recent
research in salience based methods that automatically discover concepts, helping to
identify correlated regions of bytecode [276]. Prior to MALNET-IMAGE, researchers
were limited to a small number of malicious families and types, hindering their abil-
ity to conduct large-scale explainability studies. With MALNET-IMAGE’s nearly 700
classes, researchers can explore a variety of malware, enabling new breakthroughs and
discoveries. For example, researchers might discover that new types of visualization
and sense-making techniques are needed to accurately summarize large volumes of
binary-image data to enhance security analysts decision making capabilities.

6.5 Conclusion

Computer vision research into binary-image malware detection and classification is a cru-
cial tool in protecting enterprise networks and governments from cyber attacks seeking to
interrupt critical services and steal intellectual property. Leveraging MALNET-IMAGE’s
scale and diversity—containing 1, 262, 024 binary images across a hierarchy of 47 types
and 696 families—researchers and practitioners can now conduct experiments that were
previously restricted to a few industry labs and research teams. We hope MALNET-IMAGE

becomes a central resource for a broad range of research into vision-based cyber defenses,
multi-class imbalanced classification, and interpretable security.

119

ad
wa
re
tro
jan

be
nig
n

ris
kw
ar
e

ad
dis
pla
y
sp
r

sp
yw
ar
e

ex
plo
it

do
wn
loa
de
r

sm
ss
en
d+
+t
ro
jan tro

j

sm
ss
en
d

cl i
ck
er
++
tro
jan

ad
sw
ar
e

ma
lw
ar
e

ad
wa
re
++
ad
wa
re ro

g
sp
y

mo
nit
or

ra
ns
om

++
tro
ja
n

ba
nk
er
++
tro
ja
n tr j

gr
ay

ad
wa
re+
+g
ray
wa
re+
+v
irus

fa
ke
in
st
++
tro
ja
n

ma
lw
ar
e+
+t
r j

ba
ck
do
or

dr
op
pe
r+
+t
ro
ja
n

tro
jan
do
wn
loa
de
r

ha
ck
to
ol

fa
ke
ap
p

cli
ck
fra
ud
++
ris
kw
ar
e

ad
loa
d

ad
dis
pla

y+
+a
dw
ar
e

ad
wa
re
++
vir
us

cli
ck
er

fa
ke
ap
p+
+t
ro
ja
n

ris
kw
ar
e+
+s
ms
se
nd

ro
ot
ni
k+
+t
ro
ja
n
wo
rm

fa
ke
an
gr
y
vir
us

tro
jan
dr
op
pe
r

risk
too
l++
risk
wa
re+
+v
iru
s

ad
wa
re
ar
e

sp
y+
+t
ro
ja
n
cli
ck

.92 .04 .01 .01 .01 0

.3 .59 .03 .03 .01 .01 0 0 .01 0

.18 .07 .72 0

.24 .18 .01 .54 0 .01 0

.44 .09 .01 .01 .44 0

.25 .14 .02 .02 0 .53 0 0 0 .01 .01 0

.22 .12 .01 .02 .01 0 .59 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.07 .04 .04 0 0 0 0 .84 0

.04 .32 .02 .01 0 0 0 0 .56 0 0 0 0 0 .02 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0 0 0

.3 .11 .03 .02 0 .06 0 0 0 .46 0

.36 .2 .05 .03 0 .02 .02 0 0 0 .23 0 0 0 0 .01 0 .03 0 0 0 0 .01 0 0 0 0 0 0 0 .01 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.16 .2 .01 .02 0 .02 0 0 0 0 0 .58 0

.1 0 0 0 0 0 0 0 0 0 0 0 .89 0 0 .01 0

.79 .04 .07 0 0 0 0 0 0 0 0 0 0 .09 0

.25 .21 .09 .02 .02 0 0 .06 .05 0 0 0 0 0 .21 0 0 0 0 0 0 0 .01 .03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .03 0 0 0 0 0 0 0 0

.28 .09 .04 .01 0 .01 .2 0 0 0 .01 0 .01 0 0 .35 0

.17 .1 .08 .01 .01 0 0 0 .01 0 0 0 0 0 .01 0 .59 0 0 0 0 0 0 .01 0

.17 .06 .01 0 0 .01 0 0 0 .01 0 0 0 0 0 0 0 .73 .01 0

0 .04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .01 0 0 0 0 0 0 0 .01 0

.06 .03 .08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .82 .01 0

.12 .09 .22 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .01 .55 0

.3 .15 .04 .05 0 .01 .01 0 .01 .01 .01 0 0 0 .01 0 0 0 0 0 .01 .35 .01 0 0 0 0 .01 0 0 0 .01 .02 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.2 .24 .08 .21 0 .02 0 0 .01 0 .03 0 0 0 .01 0 0 0 0 0 0 0 .2 0

.15 .13 .08 .02 0 .01 0 0 .04 0 0 0 0 0 .13 0 0 0 0 0 0 0 0 .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .03 0 0 0 0 0 0 0 0

.12 .12 .07 .01 0 .02 0 .01 0 0 0 0 0 .01 0 0 0 0 0 .02 0 0 0 0 .62 0

0 .98 0 0 .02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.62 .07 .03 0 0 .02 0 0 0 0 .02 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 .22 0 0 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0

.13 .35 0 0 .01 0 .01 0 .03 0 0 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 0 0 .44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .01 0 0 0 0

.03 .11 .08 0 .37 0 0 .42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.24 .44 .03 0 0 .04 0 .26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.24 .32 .02 0 .04 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .36 0 0 0 0 0 .01 0 0 0 0 0 0 0 0 0 0

.01 .07 0 .92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.1 .03 0 .01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .12 0 0 0 0 0 0 0 0 0 0 .73 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.75 .07 .05 0 .14 0 0 0 0 0 0 0 0 0 0 0 0 0

.45 .18 .02 .02 0 0 .02 0 .02 0 0 0 0 0 .02 0 0 0 0 0 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 .25 0 0 0 0 0 0 0 0 0 0 0 0

.64 .17 .02 0 .17 0 0 0 0 0 0 0 0 0 0 0

.08 .06 .35 0 .51 0 0 0 0 0 0 0 0 0 0

.27 .27 .08 0 0 0 0 0 .02 0 0 0 0 0 .02 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .33 0 0 0 0 0 0 0 0 0

.16 .18 0 .04 0 .07 0 0 0 .13 0 0 0 0 0 0 0 0 0 0 0 0 0 .16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .27 0 0 0 0 0 0 0 0

.32 .11 .32 0 0 .02 0 0 0 0 .02 0 0 0 .02 0 .02 0 0 0 0 0 0 0 0 0 .02 0 0 0 0 0 0 0 0 0 0 0 0 .14 0 0 0 0 0 0 0

.57 .07 0 0 0 0 0 0 0 0 0 0 0 0 0 .02 0 .33 0 0 0 0 0 0

.13 .08 .05 .03 0 .71 0 0 0 0 0

.2 .29 .06 .03 0 .03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .4 0 0 0 0

.33 .2 .13 0 0 0 0 0 .07 0 .27 0 0 0

.55 .1 .03 0 .32 0 0

.25 .25 .17 .04 0 .29 0

0 .09 0 .91

0 1
fraction of examples

Predicted Label

True Label

Classification Performance: Image Type

Figure 6.7: Malware classification results using confusion matrix heatmap (classes in descending
order of size). We analyze type level classification performance, where a dark diagonal indicates
strong performance, and a dark off-diagonal indicates poor performance. Each square in the diag-
onal indicates the percent of examples correctly classified for a particular malware type; and each
off-diagonal entry indicates the percent of incorrectly classified examples for a particular type.

120

Part IV

Robust Models

121

Inspired by the success of the deep learning models developed for MALNET-IMAGE in
Chapter 6—where our goal was to evaluate state-of-the-art computer vision models for the
task of malware classification—and concerned about their fragility to adversarial attack,
we develop UNMASK, the first model that flags semantic incoherence in computer vision
systems, such as those on self driving cars. UNMASK works by extracting robust features
(e.g., beak, wings, eyes) from an image (e.g., “bird”) and comparing them to the expected
features of the classification label. For example, if the extracted features for a “bird” image
are wheel, saddle and frame, UNMASK alerts that the model may be under attack, and
attempts to reclassify the image based on its constituent parts. Our extensive evaluation
shows that UNMASK detects up to 96.75% of attacks, and defends the model by correctly
classifying up to 93% of attacks. Clicking on the link below will open its PDF version in
the browser:

Chapter 7 UNMASK: Adversarial Detection and Defense Through Ro-
bust Feature Alignment. Scott Freitas, Shang-Tse Chen, Zijie J. Wang, Duen
Horng Chau. IEEE International Conference on Big Data (Big Data). Online,
2020. https://arxiv.org/abs/2002.09576

Inspired by UNMASK’s ability to protect computer visions systems from adversarial
attack, we develop REST, which creates noise robust models to reduce undiagnosed sleep
disorders through improved sleep monitoring—a fundamental health issue impacting up
to 70 million Americans. In the presence of noise, REST improves state-of-the-art sleep
stage scoring by 71%—allowing us to diagnose sleep disorders earlier on and in the home
environment—while using 19× parameters and 15× less MFLOPS. Clicking on the link
below will open its PDF version in the browser:

Chapter 8 REST: Robust and Efficient Neural Networks for Sleep Mon-
itoring in the Wild. Rahul Duggal*, Scott Freitas*, Cao Xiao, Duen Horng
Chau, Jimeng Sun. Proceedings of The Web Conference (WWW). Online, 2021.
* Both authors contributed equally to this research https://arxiv.org/

abs/2001.11363

122

https://arxiv.org/abs/2002.09576
https://arxiv.org/abs/2001.11363
https://arxiv.org/abs/2001.11363

CHAPTER 7
UNMASK: ADVERSARIAL DETECTION AND DEFENSE THROUGH ROBUST

FEATURE ALIGNMENT

Recent research has demonstrated that deep learning architectures are vulnerable to adver-
sarial attacks, highlighting the vital need for defensive techniques to detect and mitigate
these attacks before they occur. We present UNMASK, an adversarial detection and de-
fense framework based on robust feature alignment. UNMASK combats adversarial attacks
by extracting robust features (e.g., beak, wings, eyes) from an image (e.g., “bird”) and
comparing them to the expected features of the classification. For example, if the extracted
features for a “bird” image are wheel, saddle and frame, the model may be under attack.
UNMASK detects such attacks and defends the model by rectifying the misclassification,
re-classifying the image based on its robust features. Our extensive evaluation shows that
UNMASK detects up to 96.75% of attacks, and defends the model by correctly classifying
up to 93% of adversarial images produced by the current strongest attack, Projected Gra-
dient Descent, in the gray-box setting. UNMASK provides significantly better protection
than adversarial training across 8 attack vectors, averaging 31.18% higher accuracy. We
open source the code repository and data: https://github.com/safreita1/unmask.

7.1 Introduction

In the past few years, deep neural networks (DNNs) have shown significant susceptibil-
ity to adversarial perturbation [277, 278]. More recently, a wide range of adversarial at-
tacks [279, 280, 281] have been developed to defeat deep learning systems—in some cases
by changing the value of only a few pixels [282]. The ability of these micro perturbations to
confuse deep learning architectures highlights a critical issue with modern computer vision
systems—that these deep learning systems do not distinguish objects in ways that humans
would [283, 284]. For example, when humans see a bicycle, we see its handlebar, frame,
wheels, saddle, and pedals (Fig. 7.1, top). Through our visual perception and cognition,
we synthesize these detection results with our knowledge to determine that we are actually
seeing a bicycle.

However, when an image of a bicycle is adversarially perturbed to fool the model into
misclassifying it as a bird (by manipulating pixels), to humans, we still see the bicycle’s
robust features (e.g., handlebar). On the other hand, the attacked model fails to perceive
these robust features, and is tricked into misclassifying the image. How do we incorporate

123

https://github.com/safreita1/unmask

"Bird"
(Attacked)

Bicycle
(Correctly Classified)

Bird
(Misclassified)

Similarity Comparison
Wheel

Frame
Saddle Handlebar

Pedal

Object Detector
Extracts Features

Vulnerable Model
Feature Mismatch
Attack Detected

Attack Detection1 Rectification2

UNMASK Unmasking Attacks using Robust Feature Alignment

Figure 7.1: UNMASK combats adversarial attacks (in red) through extracting robust features from
an image (“Bicycle” at top), and comparing them to expected features of the classification (“Bird”
at bottom) from the unprotected model. Low feature overlap signals an attack. UNMASK rectifies
misclassification using the image’s extracted features. Our approach detects 96.75% of gray-box
attacks (at 9.66% false positive rate) and defends the model by correctly classifying up to 93% of
adversarial images crafted by Projected Gradient Descent (PGD).

this intuitive detection capability natural to human beings, into deep learning models to
protect them from harm?

It was recently posited that adversarial vulnerability is a consequence of a models’ sen-
sitivity to well-generalizing features in the data [285, 286]. Since models are trained to
maximize accuracy, they use any available information to achieve this goal. This often re-
sults in the use of human incomprehensible features, since a “head” or “wheel” is as natural
to a classifier as any other predictive feature. These human incomprehensible (non-robust)
features, while useful for improving accuracy, can lead to the creation of adversarially vul-
nerable models [285]. We extend this notion of adversarial vulnerability as a consequence
of non-robust features and develop a framework that protects against attacks by incorporat-
ing human priors into the classification pipeline.

7.1.1 Contributions

1. Robust Feature Extraction. We contribute the idea that robust feature alignment offers
a powerful, explainable and practical method of detecting and defending against adversarial
perturbations in deep learning models. A significant advantage of our proposed concept is
that while an attacker may be able to manipulate the class label by subtly changing pixel
values, it is much more challenging to simultaneously manipulate all the individual features
that jointly compose the image. We demonstrate that by adapting an object detector, we
can effectively extract higher-level robust features contained in images to detect and defend
against adversarial perturbations. (Section 7.3.1)

124

2. UNMASK: Detection & Defense Framework. Building on our core concept of robust
feature alignment, we propose UNMASK as a framework to detect and defeat adversar-
ial attacks by quantifying the similarity between the image’s extracted features with the
expected features of its predicted class. To illustrate how UNMASK works, we use the ex-
ample from Figure 7.1, where a bicycle image has been attacked such that it would fool an
unprotected model into misclassifying it as a bird. For a real “bird” image, we would expect
to see features such as beak, wing and tail. However, UNMASK would (correctly) extract
bike features: wheel, frame, and pedals. UNMASK quantifies the similarity between the
extracted features (of a bike) with the expected features (of a bird), in this case zero. This
comparison gives us the dual ability to both detect adversarial perturbations by selecting a
similarity threshold for which we classify an image as adversarial, and to defend the model
by predicting a corrected class that best matches the extracted features. (Section 7.3.2)

3. Extensive Evaluation. We extensively evaluate UNMASK’s effectiveness using the
large UNMASK DATASET that we have newly curated, with over 21k images in total. We
test multiple factors, including: 4 strong attacks; 2 attack strength levels; 2 popular CNN ar-
chitectures; and multiple combinations of varying numbers of classes and feature overlaps.
Experiments demonstrate that our approach detects up to 96.75% of gray-box attacks with
a false positive rate of 9.66% and (2) defends the model by correctly classifying up to 93%
of adversarial images crafted by Projected Gradient Descent (PGD). UNMASK provides
significantly better protection than adversarial training across 8 attack vectors, averaging
31.18% higher accuracy. (Section 7.4)

4. Reproducible Research: Open-source Code & Dataset. We contribute a new dataset
incorporating PASCAL-Part [287], PASCAL VOC 2010 [288], a subset of ImageNet [289]
and images scraped from Flickr—which we call the UNMASK DATASET. The goal of this
dataset is extend the PASCAL-Part and PASCAL VOC 2010 dataset in two ways—(1) by
adding 9,236 and 6,592 manually evaluated images from a subset of ImageNet and Flickr,
respectively; and (2) by converting PASCAL-Part to the standard Microsoft COCO format
[290] for easier use and adoption by the research community. Furthermore, we release
this new dataset along with our code and models on GitHub, at https://github.com/
safreita1/unmask.

Throughout the chapter we follow standard notation, using capital bold letters for ma-
trices (e.g., A), lower-case bold letters for vectors (e.g., a) and calligraphic font for sets
(e.g., S).

125

https://github.com/safreita1/unmask
https://github.com/safreita1/unmask

7.2 Background and Related Work

Adversarial attacks typically operate in one of three threat models—(i) white-box, (ii) gray-
box or (iii) black-box. In the (i) white-box setting, everything about the model and defense
techniques is visible to the attacker, allowing them to tailor attacks to individual neural
networks and defense techniques. This is the hardest scenario for the defender since the
adversary is aware of every countermeasure. In (ii) the gray-box threat model, we assume
that the attacker has access to the classification model but no information on the defense
measures. In (iii) the black-box setting, we assume that the attacker has no access to the
classification model or the defense techniques. This is the most difficult, and realistic
scenario for the attacker since they typically have limited access to the model’s inner work-
ings. Despite this disadvantage, recent research has shown that it’s possible for adversaries
to successfully craft perturbations for deep learning models in the black-box setting [291,
292, 293].

7.2.1 Adversarial Attacks

There exists a large body of adversarial attack research. We provide a brief background on
the attacks we use to probe the robustness of the UNMASK detection and defense frame-
work. We assume that all attack models operate in a gray-box setting, where the attacker
has full knowledge of the classification model, but no knowledge of the defensive measures.
We focus on untargeted attacks in all of the experiments.

Projected Gradient Descent (PGD) [294] finds an adversarial example Xp by iteratively
maximizing the loss function J(Xp, y) for T iterations, where J is the cross-entropy loss.

X(t+1)
p = X(t)

p + Πτ

[
ε · sign

{
∇

X
(t)
p
J(X(t)

p , y)
}]

(7.1)

Here X(0)
p = X and at every step t, the previous perturbed input X(t−1)

p is modified
with the sign of the gradient of the loss, multiplied by ε (attack strength). Πτ is a function
that clips the input at the positions where it exceeds the predefined L∞ (or L2) bound τ .
We select PGD since it’s one of the strongest first order attacks [294].

MI-FGSM (MIA) [295] is a gradient-based attack utilizing momentum, where it accumu-
lates the gradients gt of the first t iterations with a decay factor µ.

g(t+1) = µ · g(t) +
∇

X
(t)
p
J(X

(t)
p , y)

||∇
X

(t)
p
J(X

(t)
p , y)||1

(7.2)

126

X(t+1)
p = X(t)

p + Πτ

[
α · sign(g(t+1))

]
(7.3)

Here α = ε
T

, which controls the attack strength. The gradient accumulation (momen-
tum) helps alleviate the trade-off between attack strength and transferability—demonstrated
by winning the NIPS 2017 Targeted and Non-Targeted Adversarial Attack competitions.

7.2.2 Adversarial Defense & Detection

Adversarial training seeks to vaccinate deep learning models to adversarial image per-
turbations by modifying the model’s training process to include examples of attacked im-
ages [296, 297]. The idea is that the model will learn to classify these adversarial examples
correctly if enough data is seen. It is one of the current state-of-the-art defenses in the
white-box setting. When the adversarial examples are crafted by PGD, it is known to
improve robustness even against other types of attacks, because PGD is the strongest first-
order attack and approximately finds the hardest examples to train [294]. The adversarial
training process can be seen in the equation 7.4 below, where we utilize the adversarial
perturbations generated by equation 7.1.

min
W

[
E(X,y)∼D

(
max
δ∈S

L(W ,X + δ, y)
)]

(7.4)

The downside to this technique is that it requires a large amount of data and training
time; in addition, it does not incorporate a human prior into the training process.

Alternative Defenses. Defensive distillation is one technique used to robustify deep learn-
ing models to adversarial perturbation by training two models—one where the model is
trained normally using the provided hard labels and a second model which is trained on
soft labels from the probability output of the first model [298]. However, it has been show
that type of technique is likely a kind of gradient masking, making it vulnerable to black-
box transfer attacks [299]. In addition, there are many other defensive techniques, some
of which include pre-processing the data—which has the goal of eliminating adversarial
perturbation before model sees it. A couple of proposed techniques include, image com-
pression [300] and dimensionality reduction [301]. Data pre-processing defense is usually
model independent and can easily be used along side with other defenses. The downside
of this approach is that most pre-processing techniques have no knowledge of whether
the system is actually being attacked. More advanced attacks have also been proposed
by replacing the non-differentiable pre-processing step with an approximate differentiable
function and back-propogating through the whole pipeline [302, 303].

127

Adversarial detection attempts to determine whether or not an input is benign or adver-
sarial. This has been studied from multiple perspectives using a variety of techniques, from
topological subgraph analysis [304] to image processing [305, 306, 307], and hidden/out-
put layer activation distribution information [308, 309, 310].

7.3 UNMASK: Detection and Defense Framework

UNMASK is a new method for protecting deep learning models from adversarial attacks
by using robust features that semantically align with human intuition to combat adversarial
perturbations (Figure 7.1). The objective is to defend a vulnerable deep learning modelM
(Figure 7.1, bottom) using our UNMASK defense framework D (Figure 7.1, top), where
the adversary has full access to M but is unaware of the defense strategy D, constituting
a gray-box attack on the overall classification pipeline [300]. In developing the UNMASK

framework for adversarial detection and defense, we address three sub-problems:

1. Identify robust features by training a model K that takes as input, input space X and
maps it to a set of robust features F = {K : X → R}.

2. Detect if input space X is benign (+1) or adversarially perturbed (-1) by creating a
binary classifier C : F → {±1} that utilizes robust features F .

3. Defend against adversarial attacks by developing a classifier C : F → y to predict y
using robust features F .

We present our solution to problem 1 in Section 7.3.1; and discuss how to solve prob-
lems 2 and 3 in Section 7.3.2.

7.3.1 Aligning Robust Features with Human Intuition

In order to discuss adversarially robust features, we categorize features into three distinct
types: p-useful, (ii) γ-robust, and (iii) useful but non-robust [285]. For a distribution D,
a feature is defined as p-useful (p > 0) if it is correlated with the true label in expectation
(Eq. 7.5). These p-useful features are important for obtaining high accuracy classifiers.

E
(X,y)∼D

[y · f(X)] ≥ p (7.5)

A feature is referred to as a robust feature (γ-robust) if that feature remains useful
(γ > 0) under a set of allowable adversarial perturbations δ ∈ S. This is defined in

128

Equation 7.6.

E
(X,y)∼D

[
inf
δ∈S

y · f(X + δ)

]
≥ γ (7.6)

Lastly, a useful but non-robust feature is a feature that is p-useful for some p > 0

but not γ-robust for any γ ≥ 0. These non-robust features are useful for obtaining high
accuracy classifiers, but can be detrimental in the presence of an adversary since they are
often weakly correlated with the label and can be easily perturbed.

When training a classifier, minimizing classification loss makes no distinction between
robust and non-robust features—it only distinguishes whether a feature is p-useful. This
causes a model to utilize useful but non-robust features in order to improve classifier ac-
curacy. However, in the presence of adversarial perturbation, these useful but non-robust
features become anti-correlated with the label and lead to misclassification. On the other
hand, if a model is trained from purely robust features, it has lower classification perfor-
mance; but gains non-trivial adversarial robustness [285].

Our goal is to enable a modelM to use both γ-robust and useful but non-robust features
to achieve the highest possible classification accuracy, while utilizing only the γ-robust
features to determine if an image is attacked. This allows model M to use any signal in the
data to improve classification accuracy, while the defense framework uses only the robust
features to provide a safeguard against adversarial perturbations. In order to determine the
γ-robust features from an input space X , we develop model K to identify robust features
by training on a robust distribution D̂R that satisfies Equation 7.7.

E
(X,y)∼D̂R

[f(X) · y] =

 E
(X,y)∼D

[f(X) · y] if f ∈ F

0, otherwise
(7.7)

Here F represents the set of human-level robust features identified in the Pascal-Part
dataset using segmentation masks. Ideally, we want these human-level features to be as
useful as the original distribution D, while excluding the useful but non-robust features.
Using robust dataset D̂R, we train a robust feature extraction model K with weights W to
recognize only the human-level robust features using Equation 7.8.

min
W

[
E(X,y)∼D̂R

L(X, y)
]

(7.8)

From a practical standpoint, we adopt a Mask R-CNN architecture [311] for feature
extraction model K. We considered multiple approaches, but decided to use Mask R-CNN
for its ability to leverage image segmentation masks to learn and identify coherent image

129

regions that closely resemble robust features that would appear semantically and visually
meaningful to humans. Different from conventional image classification models or object
detectors, the annotations used to train our robust feature extractor K are segmented object
parts instead of the whole objects. For example, for the wheel feature, an instance of
training data would consist of a bike image and a segmentation mask indicating which
region of that image represents a wheel. Technically, this means K uses only a part of an
image, and not the whole image, for training (See Table 7.1). Furthermore, while an image
may consist of multiple image parts, K treats them independently.

7.3.2 Robust Features For Detection and Defense

Leveraging the robust features extracted from model K, we introduce UNMASK as a de-
tection and defense framework (D). For an unprotected model M (Figure 7.1, bottom),
an adversary crafts an attacked image by carefully manipulating its pixel values using an
adversarial technique (e.g., PGD [294]). This attacked image then fools modelM into mis-
classifying the image, as shown in Figure 7.1. To guard against this kind of attack onM , we
use our UNMASK defense framework D in conjunction with the robust feature extraction

model K (Figure 7.1, top).
Model K processes the same image, which may be benign or attacked, and extracts the

robust features from the image to compare to the images’ expected features. Figure 7.1
shows an example, where an attacked bike image has fooled the unprotected model M to
classify it as a bird. We would expect the robust features to include head, claw, wing,
and tail. However, from the same (attacked) image, UNMASK’s model K extracts wheels,
handle and seat. Comparing the set of expected features and the actual extracted features
(which do not overlap in this example), UNMASK determines the image was attacked, and
predicts its class to be bike based on the extracted features. This robust feature alignment
forges a layer of protection around a model by disrupting the traditional pixel-centric attack
[279, 294, 282]. This forces the adversary to solve a more complex problem of manipulat-
ing both the class label and all of the image’s constituent parts. For example, in Figure 7.1
the attacker needs to fool the defensive layer into misclassifying the bike as a bird by, (1)
changing the class label and (2) manipulating the robust bike features (wheel, seat, han-

dlebar) into bird features. UNMASK’s technical operations for detection and defense are
detailed below and in Algorithm 3:

1. Classify input space X to obtain prediction ŷ from unprotected model M , i.e., ŷ =

M(X). At this point, UNMASK does not know ifX is adversarial or not.

2. Extract robust features of X using robust feature extraction model K, i.e., fr =

130

Algorithm 3: UNMASK

Input: Data distribution D, unprotected model M , class-feature matrix V , input
spaceXt, threshold t

Result: adversarial prediction z ∈ {−1, 1}, predicted class p

1 E
(X,y)∼D̂R

[f(X) · y] =

 E
(X,y)∼D

[f(X) · y] if f ∈ F

0, otherwise
(create D̂R)

2 K = min
W

[
E(X,y)∼D̂R

L(X, y)
]
;

3 fr = K(Xt); (extracted features)

4 fe = V [M(Xt)]; (expected features)

5 Detection:
6 s = JS(fr, fe); d = 1− s; (JS = Jaccard similarity)

7

z =

{
+1 (benign), if d < t
−1 (adversarial), if d ≥ t

8 Defense:
9

p =

{
ŷ, if z = +1
argmin
c∈C

JS(fe,V [c]), if z = −1

10 return z, p;

K(X), where fr ⊆ F . Armed with these features fr, UNMASK detects if model M is
under attack, and rectifies misclassification.

3. Detect attack by measuring the similarity between the extracted features fr and the
set of expected features fe = V [ŷ]—where V is the feature matrix in Table 7.1—by
calculating the Jaccard similarity score s = JS(fe, fa). If distance score d = 1 − s is
greater than threshold t, input X is deemed benign, otherwise adversarial. Adjusting t
allows us to assess the trade-off between sensitivity and specificity, which we describe
in detail in Section 7.4.

4. Defend and rectify an input to be adversarial also means that model M is under attack
and is giving unreliable classification output. Thus, we need to rectify the misclassifica-
tion. UNMASK accomplishes this by comparing the robust extracted features fr to every
set of class features in V , outputting class ŷ that contains the highest feature similarity
score s, where 0 ≤ s ≤ 1.

131

7.4 Evaluation

We extensively evaluate UNMASK’s effectiveness in defending and detecting adversarial
perturbations using: 4 strong attacks across two strength levels; 2 popular CNN archi-
tectures as unprotected models M ; multiple combinations of varying numbers of classes
and feature overlaps; and benchmarking UNMASK against one of the strongest adversar-
ial defenses—adversarial training [294]. All experiments are conducted in a Linux envi-
ronment on a DGX-1 running Python 3.6 with open-source libraries Keras, Tensorflow,
PyTorch, Advertorch [312] and Matterport [313];

7.4.1 Experiment Setup

Experiments are conducted in a Linux environment using Python 3 on an Nvidia DGX-
1. We open-source all of the code, data and models used in this work. For additional
information on using UNMASK, we provide a detailed walk through at https://github.
com/safreita1/unmask.

UnMask dataset. We curated the UNMASK DATASET for evaluation, which consists of
four component datasets—PASCAL-Part, PASCAL VOC 2010, a subset of ImageNet and
images scraped from Flickr (Table 7.2). To ensure the Flickr images are not duplicates, we
compare the perceptual hash of each Flickr image to ImageNet and VOC’10. The goal of
this curation is to (i) collect all the data used in our evaluation as a single source for use by
the research community, and (ii) to increase the number of images available for evaluating
the performance of the deep learning models and the UNMASK defense framework. We
designed multiple class sets with varying number of classes and feature overlap (e.g., CS3a,
in Table 7.4; and Table 7.1), to study how they affect detection and defense effectiveness.
We call each combination of class count and feature overlap a “class set”, abbreviated as
“CS.” CS3 thus means a class set with 3 classes. CS3a and CS3b have the same number of
classes, with different feature overlap. We further discuss the utilization of data below.

In Table 7.1, the class-feature matrix describes the features contained by each class in
the dataset. The PASCAL-Part dataset has 18 variations of the leg feature, however, in
order to create a model that better generalizes, we combine this to a single leg feature. We
note that in Table 7.1, that two features have multiple sub-features condensed into a single
feature (not listed due to space constraints). These features are: vehicle: {vehicle left,
vehicle right, vehicle top, vehicle back} and coach: {coach left, coach right, coach back,
coach top, coach front}. In addition, we note that there is a minor error in the conversion
of the handlebar feature in the bike and motorcycle class (handlebar features were labeled
as hand). However, since those classes are not utilized in the experiments, the effects are

132

https://github.com/safreita1/unmask
https://github.com/safreita1/unmask

minimized.

Adversarial attacks. We evaluate UNMASK on 4 attacks:

• PGD-L∞, one of the strongest first-order attacks [294]. Its key parameter ε represents
the allowed per-pixel perturbation. For example, ε = 4 means changing up to 4 units of
intensity (out of 255). It is common to evaluate ε up to 16, with a stepsize of 2 and 20

iterations [300, 296, 294].

• PGD-L2 we also evaluate PGD in the L2 norm, which bounds the ε perturbation across
the whole image, instead of a per-pixel bound as in the L∞ norm. Since the perturbation
is bounded across the whole image, ε is naturally larger—typically ranging from 300-
900 [314].

• MI-FGSM L∞ (MIA-L∞) is a strong gradient attack with key parameters µ and ε (see
PGD-L∞). We set decay factor µ=1 as it provides the most effective attack [295].

• MI-FGSM L2 (MIA-L2) we also evaluate MI-FGSM in the L2 norm, bounding ε pertur-
bation across the whole image, instead of per-pixel as in L∞ (see PGD-L2).

Adversarial defense. We compare against adversarial training, one of the strongest ad-

100

75

50

25

0
1 2 4 6 8 16

Ac
cu
ra
cy
(%
)

Epsilon

Select ε=4 with the highest average
accuracy across attacks and class sets

CS3a

CS5b
CS5a

CS3b

Figure 7.2: Line search for adversarial training parameter ε on validation data. We select ε = 4,
since it provides the best performance on most attacks.

133

L∞PGDBenign L₂PGD L∞MIA L₂MIA

100

75

50

25

0

Ac
cu
ra
cy
(%
)

ε=1 2 4 6 8 16

Figure 7.3: Detailed bar chart describing the performance of ε across all attack vectors. We select
ε = 4, since it provides the best performance on most attacks.

versarial defense techniques. To select ε—which controls the perturbation strength of ad-
versarial training—we follow standard procedure [294] and determine ε on a per-dataset
basis (class set). Correctly setting this parameter is critical since a small ε value will have
no effect on robustness, while too high a value will lead to poor benign accuracy. Follow-
ing standard procedure, we select ε on a per-dataset basis (class set in our case) [294] by
conducting a line search across ε = {1, 2, 4, 6, 8, 16}. We find that ε = 4, provides the best
performance on the validation set across each class sets, as seen in Figure 7.2. While ε =
6 appears to be a good choice for class set CS3a, it has poor generalization performance
and overfits to PGD-L∞. This can be seen through the bar chart of Figure 7.3, where ε > 4

reduces the generalization of adversarial training to all other attack vectors. For this reason,
we select ε = 4 for all class sets.

Training robust feature extraction model. As illustrated in Figure 7.1, the robust feature
extraction model K takes an image as input (e.g., bike) and outputs a set of features (e.g.,
wheel,...). To train K, we use the PASCAL-Part dataset [287], which consists of 180,423
feature segmentation masks over 9,323 images across the 44 robust features. The original
dataset contains very fine-grained features, such as 18 types of “legs” (e.g., right front lower
leg, left back upper leg), while for our purposes we only need the abstraction of “leg”.
Therefore, we combined these fine-grained features into more generalized ones (shown as
rows in Table 7.1).

We train K for 40 epochs, following a similar procedure described in [313]. We use a
ratio of 80/10/10 for training, validating and testing the model respectively (see Table 7.2).
Our work is the first adaptation of Mask R-CNN model for the PASCAL-Part dataset. As
such, there are no prior results for comparison. We computed model K’s mean Average
Precision (mAP), which estimates K’s ability to extract features. The model attains an
mAP of 0.56, in line with Mask R-CNN on other datasets [311]. Model K processes up
to 4 images per second with a single Nvidia Titan X, matching the speeds reported in

134

[313]. This speed can be easily raised through parallelism by using more GPUs. As robust
feature extraction is the most time-intensive process of the UNMASK framework, its speed
is representative of the overall speed of the framework.

Training the unprotected model. As described in Section 7.3, M is the model under at-
tack, and is what UNMASK aims to protect. In practice, the choice of architecture for M
and the data it is trained on are determined by the application. Here, our evaluation stud-
ies two popular deep learning architectures — ResNet50 [315] and DenseNet121 [267]—
however, UNMASK supports other architectures. Training these models from scratch is
generally computationally expensive and requires large amount of data. To reduce such
need for computation and data, we adopt the approach described in [313], where we lever-
age a model pre-trained on ImageNet images, and replace its dense layers (i.e., the fully
connected layers) to enable us to work with various class sets (e.g., CS3a). Refer to Table
7.2, for a breakdown of the data used for training and evaluation.

7.4.2 Evaluating UnMask Defense and Detection

The key research questions that our evaluation aims to address is how effective UNMASK

can (1) detect adversarial images, and (2) defend against attacks by rectifying misclassi-
fication through inferring the actual class label. We scrape Flickr (see Table 7.2) to obtain
a large number of unseen images matching our class sets. We note that evaluation is fo-
cused on images containing a single-class (i.e., no “person” and “car” in same image) as
this allows for a more controlled environment.

Evaluating defense and rectification. As the defense evaluation focus is on rectifying
misclassification, our test images have a contamination level of 1—meaning all of the im-
ages are adversarial. Comparing UNMASK to adversarial training (AT), we find that uti-
lizing robust features that semantically align with human intuition provides a significant
improvement over γ-robust features learned through adversarial training. We begin with a
high-level analysis in Figure 7.4, comparing UNMASK to adversarial training (“AT”) and
no defense (“None”). UNMASK’s robust feature alignment performs 31.18% better than
adversarial training and 74.44% than no defense when averaged across 8 attack vectors and
all class sets (see Figure 7.4).

In Table 7.4, we analyze the information contained in Figure 7.4 in detail. One key
observation is that feature overlap is a dominant factor in determining the accuracy of the
UNMASK defense, as opposed to the number of classes. When examining the ResNet50
model on MIA-L∞ (ε=8), class set CS3b (3 classes; feature overlap 50%), UNMASK is
able to determine the underlying class 77% of the time. At class set CS5a (5 classes;

135

feature overlap 23.53%) an accuracy of 79% is obtained, highlighting the important role
that feature overlap plays in UNMASK’s defense ability. Similar trends can be observed
across many of the attacks. In addition, Table 7.4 highlights that UNMASK is agnostic to
the deep learning model that is being protected (ResNet50 vs DenseNet121), as measured
by the ability of UNMASK to infer an adversarial images’ actual class.

It is interesting to observe that MIA-L∞ is more effective at breaking the UNMASK

defense. We believe this could be due to the single-step attacks’ better transferability, which
has been reported in prior work [296]. We also note the fact that UNMASK’s accuracy could
be higher than the un-attacked model M if model K learns a better representation of the
data through the feature masks as opposed to modelM , which trains on the images directly.

Evaluating attack detection. To evaluate UNMASK’s effectiveness in detecting adversar-
ial images, we set the contamination level to 0.5—meaning half of the images are benign
and the other half are adversarial. Figure 7.5 summarizes UNMASK’s detection effective-
ness, using receiver operating characteristics (ROC) curves constructed by varying the
adversarial-benign threshold t. The curves show UNMASK’s performance across operat-
ing points as measured by the tradeoff between true positive (TP) and false positive (FP)
rates. Table 7.3 shows the number of images used to test the detection ability of UNMASK.
Only images that are successfully attacked are used for evaluation (combined with benign
counterparts), thus the variations in numbers.

An interesting characteristic of UNMASK’s protection is that its effectiveness may not
be affected strictly based on the number of classes in the dataset as in conventional classi-
fication tasks. Rather, an important factor is how much feature overlap there is among the
classes. The ROC curves in Figure 7.5 illustrate this phenomenon, where UNMASK pro-
vides better detection when there are 5 classes (Figure 7.5, dark orange) than when there
are 3 classes (light blue). As shown in Table 7.2, the 5-class setup (CS5a—dark orange) has

None

AT

UM

CS3a

26%
Higher

77%
Higher

CS3b

35%

74%

CS5a

34%

76%

CS5b

29%

71%

100

75

50

25

0

Ac
cu
ra
cy
(%
)

Figure 7.4: Accuracies (in %) for each class set averaged across all attack vectors, strengths, and
models from Table 7.4. On average, UNMASK (UM) performs 31.18% better than adversarial
training (AT) and 74.44% than no defense (None).

136

1

0 1

1

0 1

-L₂ ε=600PGD

-L₂ ε=600MIA
1

0 1

1

0 1

-L∞ ε=8PGD

CS3a: 6.89% feature overlap

CS5a: 23.53%

CS5b: 29.41%

CS3b: 50.00%

-L∞ ε=8MIA

False Positive Rate

Tr
ue
Po
si
tiv
e
Ra
te

1

0 1

1

0 1

-L₂ ε=300PGD

-L₂ ε=300MIA
1

0 1

-L∞ ε=16PGD
1

0 1

-L∞ ε=16MIA

Figure 7.5: UNMASK’s effectiveness in detecting 4 strong attacks at two strength levels. UN-
MASK’s protection may not be affected strictly based on the number of classes. Rather, an impor-
tant factor is the feature overlap among classes. UNMASK provides better detection when there are
5 classes (dark orange; 23.53% overlap) than when there are 3 (light blue; 50% overlap). Keeping
the number of classes constant and varying their feature overlap also supports our observation about
the role of feature overlap (e.g., CS3a at 6.89% vs. CS3b at 50%). Dotted line indicates random
guessing.

a feature overlap of 23.53% across the the 5 classes’ 34 unique features, while the 3-class
setup (CS3b—light blue) has 50% overlap. Keeping the number of classes constant and
varying their feature overlap also supports this observation about the role of feature overlap
(e.g., CS3a vs. CS3b in Figure 7.5).

For a given feature overlap level, UNMASK performs similarly across attack methods.
When examining feature overlap 6.89% (CS3a) on DenseNet121, UNMASK attains AUC
scores of 0.95, 0.958, 0.968, 0.967, 0.962, 0.961, 0.969 and 0.967 on attacks PGD-L∞
(ε=8/16), PGD-L2 (ε=300/600), MIA-L∞ (ε=8/16) and MIA-L2 (ε=300/600), respectively.
This result is significant because it highlights the ability of UNMASK to operate against
multiple strong attack strategies to achieve high detection success rate. As a representative
ROC operating point for the attack vectors, we use MIA-L2 (ε=300) on feature overlap
6.89%. In this scenario, UNMASK is able to detect up to 96.75% of attacks with a false
positive rate of 9.66%. We believe that performing well in a low feature overlap environ-
ment is all that is required. This is because in many circumstances it is not important to
distinguish the exact class (e.g., dog or cat) of the image, but whether the image is be-
ing completely misclassified (e.g., car vs. person). Therefore, in practice, classes can be
selected such that feature overlap is minimized.

137

7.5 Conclusion

In this chapter, we have introduced a new method for semantically aligning robust features
with human intuition, and showed how it protects deep learning models against adversarial
attacks through the UNMASK detection and defense framework. Through extensive evalu-
ation, we analyze the merits of UNMASK’s ability to detect attacks—finding up to 96.75%
of attacks with a false positive rate of 9.66%; and defend deep learning models—correctly
classifying up to 93% of adversarial images in the gray-box scenario. UNMASK provides
significantly better protection than adversarial training across 8 attack vectors, averaging
31.18% higher accuracy. Our proposed method is fast and architecture-agnostic. We expect
our approach to be one of multiple techniques used in concert to provide comprehensive
protection. Fortunately, our proposed technique can be readily integrated with many exist-
ing techniques, as it operates in parallel to the deep learning model that it aims to protect.

138

Features A
ir

pl
an

e
B

ic
yc

le
B

ir
d

B
oa

t
B

ot
tle

B
us

C
ar

C
at

C
ha

ir
C

ow
D

in
in

g
Ta

bl
e

D
og

H
or

se
M

ot
or

bi
ke

Pe
rs

on
Po

tte
d

Pl
an

t
Sh

ee
p

So
fa

Tr
ai

n
Te

le
vi

si
on

Arm
Beak
Body
Cap
Coach
Door
Engine
Ear
Eye
Eyebrow
Foot
Front side
Hair
Hand
Head
Headlight
Hoof
Horn
Leg
License plate
Mirror
Mouth
Muzzle
Neck
Nose
Paw
Plant
Pot
Saddle
Screen
Stern
Tail
Torso
Vehicle
Wheel
Window
Wing
Class Set
CS3a
CS3b
CS5a
CS5b

Table 7.1: Class-Feature Matrix. Top: dots mark classes’ features. Bottom: four class sets with
varying levels of feature overlap. Features vehicle and coach have sub-features not listed here due
to space (see Github repository).

139

Experimental Setup PASCAL-Part VOC+Net Flickr

Model Class set Classes Parts Overlap Train Val Test Train Val Test

K - 44 - - 7,457 930 936 - - -

M

CS3a 3 29 6.89% - - - 7,780 1,099 2,351
CS3b 3 18 50.00% - - - 9,599 1,339 2,867
CS5a 5 34 23.53% - - - 11,639 1,477 3,179
CS5b 5 34 29.41% - - - 13,011 1,928 4,129

Table 7.2: Number of images used to train and evaluate models K, M and defense framework
D. We train K on PASCAL-Part dataset, and model M on PASCAL VOC 2010 plus a subset
of ImageNet. Four class sets are investigated in the evaluation, with varying classes and feature
overlap. We evaluate model M and defense framework D on Flickr.

Class Set Number of Images Evaluated

PGD-L∞ PGD-L2 MIA-L∞ MIA-L2

CS3a 3,648 4,702 4,702 4,702
CS3b 4,652 5,732 5,734 5,734
CS5a 5,412 6,358 6,358 6,358
CS5b 6,822 8,256 8,258 8,258

Table 7.3: Number of images used to evaluate the detection capability of UNMASK. Only images
that are successfully attacked are used for evaluation (combined with their benign counterparts), thus
the variations in numbers. We report values for PGD and MIA with ε=16, respectively. Numbers
are similar for ε=8.

140

Setup No Attk PGD-L∞ PGD-L∞ PGD-L2 PGD-L2

ε = 8 ε = 16 ε = 300 ε = 600

M CS None AT UM None AT UM None AT UM None AT UM None AT UM

R
es

N
et

3a .98 .96 .94 .31 .71 .85 .22 .50 .72 .07 .86 .92 .00 .67 .91
3b .97 .94 .92 .24 .63 .82 .19 .47 .68 .01 .75 .89 .00 .31 .85
5a .97 .92 .93 .17 .51 .82 .15 .24 .66 .00 .79 .91 .00 .57 .89
5b .97 .92 .91 .22 .56 .78 .17 .34 .61 .04 .78 .88 .00 .50 .84

D
en

se
N

et 3a .97 .95 .94 .31 .70 .86 .24 .48 .74 .02 .86 .93 .00 .71 .91
3b .97 .93 .92 .25 .60 .82 .23 .44 .67 .02 .79 .89 .00 .46 .85
5a .97 .90 .93 .22 .51 .82 .18 .27 .66 .03 .77 .91 .00 .54 .88
5b .97 .92 .91 .24 .55 .79 .21 .28 .62 .02 .81 .89 .00 .58 .85

Setup No Attk MIA-L∞ MIA-L∞ MIA-L2 MIA-L2

ε = 8 ε = 16 ε = 300 ε = 600

M CS None AT UM None AT UM Non AT UM None AT UM None AT UM

R
es

N
et

3a .98 .96 .94 .00 .22 .82 .00 .00 .68 .01 .86 .92 .00 .68 .91
3b .97 .94 .92 .00 .02 .77 .00 .00 .63 .00 .68 .89 .00 .29 .85
5a .97 .92 .93 .00 .25 .79 .00 .02 .63 .00 .79 .91 .00 .58 .89
5b .97 .92 .91 .00 .12 .73 .00 .01 .55 .01 .77 .87 .00 .51 .84

D
en

se
N

et 3a .97 .95 .94 .00 .37 .83 .00 .02 .69 .00 .86 .92 .00 .72 .90
3b .97 .93 .92 .00 .18 .76 .00 .01 .62 .00 .78 .89 .00 .49 .85
5a .97 .90 .93 .00 .27 .78 .00 .02 .58 .00 .77 .91 .00 .56 .87
5b .97 .92 .91 .00 .30 .75 .00 .03 .58 .00 .80 .89 .00 .60 .84

Table 7.4: Accuracies in countering 4 strong attacks at 2 strength levels (PGD-L∞, PGD-L2, MIA-
L∞, MIA-L2), using 2 CNN architectures as unprotected model M across 4 class sets. UNMASK

(“UM”) provides significantly better protection than adversarial training (“AT”), 31.18% on average.
“None” means no defense.

141

CHAPTER 8
REST: ROBUST AND EFFICIENT NEURAL NETWORKS FOR SLEEP

MONITORING IN THE WILD

In recent years, significant attention has been devoted towards integrating deep learning
technologies in the healthcare domain. However, to safely and practically deploy deep
learning models for home health monitoring, two significant challenges must be addressed:
the models should be (1) robust against noise; and (2) compact and energy-efficient. We
propose REST, a new method that simultaneously tackles both issues via 1) adversarial

training and controlling the Lipschitz constant of the neural network through spectral reg-

ularization while 2) enabling neural network compression through sparsity regularization.
We demonstrate that REST produces highly-robust and efficient models that substantially
outperform the original full-sized models in the presence of noise. For the sleep stag-
ing task over single-channel electroencephalogram (EEG), the REST model achieves a
macro-F1 score of 0.67 vs. 0.39 achieved by a state-of-the-art model in the presence of
Gaussian noise while obtaining 19× parameter reduction and 15× MFLOPS reduction on
two large, real-world EEG datasets. By deploying these models to an Android applica-
tion on a smartphone, we quantitatively observe that REST allows models to achieve up
to 17× energy reduction and 9× faster inference. We open source the code repository
https://github.com/duggalrahul/REST.

8.1 Introduction

As many as 70 million Americans suffer from sleep disorders that affects their daily func-
tioning, long-term health and longevity. The long-term effects of sleep deprivation and
sleep disorders include an increased risk of hypertension, diabetes, obesity, depression,
heart attack, and stroke [19]. The cost of undiagnosed sleep apnea alone is estimated to
exceed 100 billion in the US [20].

A central tool in identifying sleep disorders is the hypnogram—which documents the
progression of sleep stages (REM stage, Non-REM stages N1 to N3, and Wake stage) over
an entire night (see Fig. 8.1, top). The process of acquiring a hypnogram from raw sensor
data is called sleep staging, which is the focus of this work. Traditionally, to reliably obtain
a hypnogram the patient has to undergo an overnight sleep study—called polysomnography

(PSG)—at a sleep lab while wearing bio-sensors that measure physiological signals, which
include electroencephalogram (EEG), eye movements (EOG), muscle activity or skeletal

142

https://github.com/duggalrahul/REST

Rest
Model

Expert
Scored

SOTA
Model

W

N1

N2

N3

REM

W

N1

N2

N3

REM

W

N1

N2

N3

REM

0 200 400 600 800 1000

Hypnogram Scoring in Noisy EnvironmentHypnogram Scoring in Noisy Environment

Efficiency Measurements

Inference
Time (s)

Energy
Usage (J)

1143

123

355

57

Rest is 9x more efficient

Rest is 6x faster

SOTA (state-of-the-art)

SOTA

Time

Figure 8.1: Top: we generate hypnograms for a patient in the SHHS test set. In the presence
of Gaussian noise, our REST-generated hypnogram closely matches the contours of the expert-
scored hypnogram. Hypnogram generated by a state-of-the-art (SOTA) model by Sors et al. [316]
is considerably worse. Bottom: we measure energy consumed (in Joules) and inference time (in
seconds) on a smartphone to score one night of EEG recordings. REST is 9X more energy efficient
and 6X faster than the SOTA model.

muscle activation (EMG), and heart rhythm (ECG). The PSG data is then analyzed by a
trained sleep technician and a certified sleep doctor to produce a PSG report. The hypno-
gram plays an essential role in the PSG report, where it is used to derive many important
metrics such as sleep efficiency and apnea index. Unfortunately, manually annotating this
PSG is both costly and time consuming for the doctors. Recent research has proposed to
alleviate these issues by automatically generating the hypnogram directly from the PSG
using deep neural networks [317, 318]. However, the process of obtaining a PSG report is
still costly and invasive to patients, reducing their participation, which ultimately leads to
undiagnosed sleep disorders [319].

One promising direction to reduce undiagnosed sleep disorders is to enable sleep mon-
itoring at the home using commercial wearables (e.g., Fitbit, Apple Watch, Emotiv) [320].
However, despite significant research advances, a recent study shows that wearables using
a single sensor (e.g., single lead EEG) often have lower performance for sleep staging,
indicating a large room for improvement [321].

143

EEG Sensor
REM

Wake
Vulnerable to noise

Vanilla Model
X

Noisy REM Signal

Gaussian Noise

Robust + Sparse
R��� 3: Re-train Model2: PruneModel1: TrainModel

LADV + LSPCLADV+ LSPC+ LSPA

R��� P������R��� P������

Figure 8.2: REST Overview: (from left) When a noisy EEG signal belonging to the REM (rapid
eye movement) sleep stage enters a traditional neural network which is vulnerable to noise, it gets
wrongly classified as a Wake sleep stage. On the other hand, the same signal is correctly classified
as the REM sleep stage by the REST model which is both robust and sparse. (From right) REST is a
three step process involving (1) training the model with adversarial training, spectral regularization
and sparsity regularization (2) pruning the model and (3) re-training the compact model.

8.1.1 Contributions

Our contributions are two-fold—(i) we identify emerging research challenges for the task of
sleep monitoring in the wild; and (ii) we propose REST, a novel framework that addresses
these issues.

I. New Research Challenges for Sleep Monitoring.

• C1. Robustness to Noise. We observe that state-of-the-art deep neural networks (DNN)
are highly susceptible to environmental noise (Fig. 8.1, top). In the case of wearables,
noise is a serious consideration since bioelectrical signal sensors (e.g., electroencephalo-
gram “EEG”, electrocardiogram “ECG”) are commonly susceptible to Gaussian and shot

noise, which can be introduced by electrical interferences (e.g., power-line) and user mo-
tions (e.g., muscle contraction, respiration) [322, 323, 324, 325]. This poses a need for
noise-tolerant models. We show that adversarial training and spectral regularization can
impart significant noise robustness to sleep staging DNNs (see top of Fig 8.1).

• C2. Energy and Computational Efficiency. Mobile deep learning systems have tra-
ditionally offloaded compute intensive inference to cloud servers, requiring transfer of
sensitive data and assumption of available Internet. However, this data uploading pro-
cess is difficult for many healthcare scenarios because of—(1) privacy: individuals are
often reluctant to share health information as they consider it highly sensitive; and (2)
accessibility: real-time home monitoring is most needed in resource-poor environments
where high-speed Internet may not be reliably available. Directly deploying a neural
network to a mobile phone bypasses these issues. However, due to the constrained com-
putation and energy budget of mobile devices, these models need to be fast in speed and
parsimonious with their energy consumption.

144

II. Noise-robust and Efficient Sleep Monitoring. Having identified these two new re-
search challenges, we propose REST, the first framework for developing noise-robust and
efficient neural networks for home sleep monitoring (Fig. 8.2). Through REST, our major
contributions include:

• “Robust and Efficient Neural Networks for Sleep Monitoring” By integrating a novel
combination of three training objectives, REST endows a model with noise robustness
through (1) adversarial training and (2) spectral regularization; and promotes energy and
computational efficiency by enabling compression through (3) sparsity regularization.

• Extensive evaluation We benchmark the performance of REST against competitive base-
lines, on two real-world sleep staging EEG datasets—Sleep-EDF from Physionet and
Sleep Heart Health Study (SHHS). We demonstrate that REST produces highly compact
models that substantially outperform the original full-sized models in the presence of
noise. REST models achieves a macro-F1 score of 0.67 vs. 0.39 for the state-of-the-
art model in the presence of Gaussian noise, with 19× parameter and 15× MFLOPS
reduction.

• Real-world deployment. We deploy a REST model onto a Pixel 2 smartphone through
an Android application performing sleep staging. Our experiments reveal REST achieves
17× energy reduction and 9× faster inference on a smartphone, compared to uncom-
pressed models.

8.2 Related Work

In this section we discuss related work from three areas—(1) the task of sleep stage predic-
tion, (2) robustness of deep neural networks and (3) compression of deep learning models.

8.2.1 Sleep-Stage Prediction

Sleep staging is the task of annotating a polysomnography (PSG) report into a hypnogram,
where 30 second sleep intervals are annotated into one of five sleep stages (W, N1, N2, N3,
REM). Recently, significant effort has been devoted towards automating this annotation
process using deep learning [316, 317, 326, 327, 328, 329], to name a few. While there ex-
ists a large body of research in this area—two works in particular look at both single chan-
nel [317] and multi-channel [326] deep learning architectures for sleep stage prediction on
EEG. In [317], the authors develop a deep learning architecture (SLEEPNET) for sleep
stage prediction that achieves expert-level accuracy on EEG data. In [326], the authors

145

develop a multi-modal deep learning architecture for sleep stage prediction that achieves
state-of-the-art accuracy. As we demonstrate later in this chapter (Section 8.4.5), these
sleep staging models are frequently susceptible to noise and suffer a large performance
drop in its presence (see Figure 8.1). In addition, these DNNs are often overparameterized
(Section 8.4.6), making deployment to mobile devices and wearables difficult. Through
REST, we address these limitations and develop noise robust and efficient neural networks
for edge computing.

8.2.2 Noise & Adversarial Robustness

Adversarial robustness seeks to ensure that the output of a neural network remains un-
changed under a bounded perturbation of the input; or in other words, prevent an adveresary
from maliciously perturbing the data to fool a neural network. Adversarial deep learning
was popularized by [330], where they showed it was possible to alter the class prediction of
deep neural network models by carefully crafting an adversarially perturbed input. Since
then, research suggests a strong link between adversarial robustness and noise robustness
[331, 332, 286]. In particular, [331] found that by performing adversarial training on a deep
neural network, it becomes robust to many forms of noise (e.g., Gaussian, blur, shot, etc.).
In contrast, they found that training a model on Gaussian augmented data led to models
that were less robust to adversarial perturbations. We build upon this finding of adversarial
robustness as a proxy for noise robustness and improve upon it through the use of spectral
regularization; while simultaneously compressing the model to a fraction of its original size
for mobile devices.

8.2.3 Model Compression

Model compression aims to learn a reduced representation of the weights that parame-
terize a neural network; shrinking the computational requirements for memory, floating
point operations (FLOPS), inference time and energy. Broadly, prior art can be classified
into four directions—pruning [333], quantization [334], low rank approximation [335] and
knowledge distillation [336]. For REST, we focus on structured (channel) pruning thanks
to its performance benefits (speedup, FLOP reduction) and ease of deployment with regu-
lar hardware. In structured channel pruning, the idea is to assign a measure of importance
to each filter of a convolutional neural network (CNN) and achieve desired sparsity by
pruning the least important ones. Prior work demonstrates several ways to estimate filter
importance—magnitude of weights [337], structured sparsity regularization [338], regular-
ization on activation scaling factors [339], filter similarity [340] and discriminative power

146

of filters [341]. Recently there has been an attempt to bridge the area of model compression
with adversarial robustness through connection pruning [342] and quantization [343]. Dif-
ferent from previous work, REST aims to compress a model by pruning whole filters while
imparting noise tolerance through adversarial training and spectral regularization. REST

can be further compressed through quantization [343].

8.3 REST: Noise-Robust & Efficient Models

REST is a new method that simultaneously compresses a neural network while developing
both noise and adversarial robustness.

8.3.1 Overview

Our main idea is to enable REST to endow models with these properties by integrating three
careful modifications of the traditional training loss function. (1) The adversarial training

term, which builds noise robustness by training on adversarial examples (Section 8.3.2);
(2) the spectral regularization term, which adds to the noise robustness by constraining
the Lipschitz constant of the neural network (Section 8.3.3); and (3) the sparsity regular-
ization term that helps to identify important neurons and enables compression (Section
8.3.4). Throughout the chapter, we follow standard notation and use capital bold letters for
matrices (e.g., A), lower-case bold letters for vectors (e.g., a).

8.3.2 Adversarial Training

The goal of adversarial training is to generate noise robustness by exposing the neural net-
work to adversarially perturbed inputs during the training process. Given a neural network
f(X; W) with input X, weights W and corresponding loss function L(f(X; W), y), adver-
sarial training aims at solving the following min-max problem:

min
W

[
E

X,y∼D

(
max
δ∈S

L(f(X + δ; W), y)

)]
(8.1)

Here D is the unperturbed dataset consisting of the clean EEG signals X ∈ RKin×KL

(Kin is the number of channels and KL is the length of the signal) along with their cor-
responding label y. The inner maximization problem in (8.1) embodies the goal of the
adversary—that is, produce adversarially perturbed inputs (i.e., X + δ) that maximize the
loss function L. On the other hand, the outer minimization term aims to build robustness
by countering the adversary through minimizing the expected loss on perturbed inputs.

147

Maximizing the inner loss term in (8.1) is equivalent to finding the adversarial signal
Xp = X + δ that maximally alters the loss function L within some bounded perturbation
δ ∈ S. Here S is the set of allowable perturbations. Several choices exist for such an
adversary. For REST, we use the iterative Projected Gradient Descent (PGD) adversary
since it’s one of the strongest first order attacks [294]. Its operation is described below in
Equation 8.2.

X(t+1)
p = X(t)

p + Πτ

[
ε · sign

{
∇X(t)

p
L
(
f (X(t)

p ; W), y
)}]

(8.2)

Here X(0)
p = X and at every step t, the previous perturbed input X(t−1)

p is modified
with the sign of the gradient of the loss, multiplied by ε (controls attack strength). Πτ is
a function that clips the input at the positions where it exceeds the predefined L∞ bound
τ . Finally, after niter iterations we have the REST adversarial training term Ladv in Equa-
tion 8.3.

Ladv = L(f(X(niter)
p ; W), y) (8.3)

8.3.3 Spectral Regularizer

The second term in the objective function is the spectral regularization term, which aims to
constrain the change in output of a neural network for some change in input. The intuition
is to suppress the amplification of noise as it passes through the successive layers of a neural
network. In this section we show that an effective way to achieve this is via constraining
the Lipschitz constant of each layer’s weights.

For a real valued function f : R → R the Lipschitz constant is a positive real value C
such that |f(x1) − f(x2)| ≤ C|x1 − x2|. If C > 1 then the change in input is magnified
through the function f . For a neural net, this can lead to input noise amplification. On the
other hand, if C < 1 then the noise amplification effect is diminished. This can have the
unintended consequence of reducing the discriminative capability of a neural net. Therefore
our goal is to set the Lipschitz constant C = 1. The Lipschitz constant for the lth fully
connected layer parameterized by the weight matrix W(l) ∈ RKin×Kout is equivalent to its
spectral norm ρ(W(l)) [344]. Here the spectral norm of a matrix W is the square root
of the largest singular value of WTW. The spectral norm of a 1-D convolutional layer
parameterized by the tensor W(l) ∈ RKout×Kin×Kl can be realized by reshaping it to a
matrix W(l) = RKout×(KinKl) and then computing the largest singular value.

A neural network of N layers can be viewed as a function f(·) composed of N sub-
functions f(x) = f1(·) ◦ f2(·) ◦ ...fN(x). A loose upper bound for the Lipschitz constant

148

Algorithm 4: Noise Robust & Efficient Neural Network Training (REST)
Input: Model weights W, EEG signal X and label y from dataset D, spectral

regularization λo, sparsity regularization λg, learning rate α, perturbation
strength ε, maximum PGD iterations niter and model sparsity s

Output: Noise robust, compressed neural network

1 (1) Train the full model with REST loss LR:

2 for epoch = 1 to N do
3 for minibatch B ⊂ D do
4 for X ∈ B do
5 X(1)

p = X
6 for k=1 to niter do
7 X(k+1)

p = X(k)
p + Πτ (ε · sign(∇X(k)

p
L(f (X(k)

p ; W), y)))

8 Wgrad ← E
X,y∼D

|OWLR(Xp , y ; W)|

9 where LR =

L(f(Xp ; W), y)︸ ︷︷ ︸
adversarial training

+λo

N∑
layer l=1

‖(W(l))TW(l) − I‖2︸ ︷︷ ︸
spectral regularization

+λg

N∑
layer l=1

‖γ(l)‖1︸ ︷︷ ︸
sparsity regularization

10 W←W− α ·Wgrad

11 (2) Prune the trained model:
12 Globally prune filters from W having smallest γ values until nf (W′)

nf (W)
≤ s. Constrain

layerwise sparsity so nf (W′(l))
nf (W(l))

≥ 0.1.

13 (3) Re-train the pruned model:
14 Retrain compressed network f(X; W′) using adversarial training and spectral

regularization (no sparsity regularization).

of f is the product of Lipschitz constants of individual layers or ρ(f) ≤
∏N

i=1 ρ(fi) [344].
The overall Lipschitz constant can grow exponentially if the spectral norm of each layer
is greater than 1. On the contrary, it could go to 0 if spectral norm of each layer is be-
tween 0 and 1. Thus the ideal case arises when the spectral norm for each layer equals
1. This can be achieved in several ways [345, 344, 346], however, one effective way is to
encourage orthonormality in the columns of the weight matrix W through the minimiza-
tion of ‖WTW− I‖ where I is the identity matrix. This additional loss term helps regulate
the singular values and bring them close to 1. Thus we incorporate the following spectral
regularization term into our loss objective, where λo is a hyperparameter controlling the

149

strength of the spectral regularization.

LSpectral = λo

N∑
i=1

‖(W(i))TW(i) − I‖2 (8.4)

8.3.4 Sparsity Regularizer & REST Loss Function

The third term of the REST objective function consists of the sparsity regularizer. With this
term, we aim to learn the important filters in the neural network. Once these are determined,
the original neural network can be pruned to the desired level of sparsity.

The incoming weights for filter i in the lth fully connected (or 1-D convolutional) layer
can be specified as W(l)

i ,: ∈ RKin (or W(l)
i ,:,: ∈ RKin×KL). We introduce a per filter multipli-

cand γ(l)i that scales the output activation of the ith neuron in layer l. By controlling the
value of this multiplicand, we realize the importance of the neuron. In particular, zeroing
it amounts to dropping the entire filter. Note that the L0 norm on the multiplicand vec-
tor ‖γ(l)‖0, where γ(l) ∈ RKout , can naturally satisfy the sparsity objective since it counts
the number of non zero entries in a vector. However since the L0 norm is a nondifferen-
tiable function, we use the L1 norm as a surrogate [347, 338, 339] which is amenable to
backpropagation through its subgradient.

To realize the per filter multiplicand γ(l)
i , we leverage the per filter multiplier within the

batch normalization layer [339]. In most modern networks, a batchnorm layer immediately
follows the convolutional/linear layers and implements the following operation.

B
(l)
i =

(
A(l) − µ(l)

i

σ
(l)
i

)
γ
(l)
i + β

(l)
i (8.5)

Here A(l)
i denotes output activation of filter i in layer l while B(l)

i denotes its transfor-
mation through batchnorm layer l; µ(l) ∈ RKout , σ(l) ∈ RKout denote the mini-batch mean
and standard deviation for layer l’s activations; and γ(l) ∈ RKout and β(l) ∈ RKout are
learnable parameters. Our sparsity regularization is defined on γ(l) as below, where λg is a
hyperparameter controlling the strength of sparsity regularization.

LSparsity = λg

N∑
i=1

‖γ(l)‖1 (8.6)

The sparsity regularization term (8.6) promotes learning a subset of important filters
while training the model. Compression then amounts to globally pruning filters with the
smallest value of multiplicands in (8.5) to achieve the desired model compression. Pruning

150

typically causes a large drop in accuracy. Once the pruned model is identified, we fine-tune
it via retraining.

Now that we have discussed each component of REST, we present the full loss function
in (8.7) and the training process in Algorithm 4. A pictorial overview of the process can be
seen in Figure 8.2.

LR = L(f(Xp ; W), y)︸ ︷︷ ︸
adversarial training

+ λo

N∑
i=1

‖(W(i))TW(i) − I‖2︸ ︷︷ ︸
spectral regularization

+ λg

N∑
i=1

‖γ(l)‖1︸ ︷︷ ︸
sparsity regularization

(8.7)

8.4 Experiments

We compare the efficacy of REST neural networks to four baseline models (Section 8.4.2)
on two publicly available EEG datasets—Sleep-EDF from Physionet [348] and Sleep Heart
Health Study (SHHS) [349]. Our evaluation focuses on two broad directions—noise ro-
bustness and model efficiency. Noise robustness compares the efficacy of each model
when EEG data is corrupted with three types of noise: adversarial, Gaussian and shot.
Model efficiency compares both static (e.g., model size, floating point operations) and dy-
namic measurements (e.g., inference time, energy consumption). For dynamic measure-
ments which depend on device hardware, we deploy each model to a Pixel 2 smartphone.

8.4.1 Datasets

Our evaluation uses two real-world sleep staging EEG datasets.

• Sleep-EDF: This dataset consists of data from two studies—age effect in healthy sub-
jects (SC) and Temazepam effects on sleep (ST). Following [318], we use whole-night
polysomnographic sleep recordings on 40 healthy subjects (one night per patient) from

Dataset W N1 N2 N3(N4) REM Total

Sleep-EDF 8,168 2,804 17,799 5,703 7,717 42,191
SHHS 28,854 3,377 41,246 13,409 13,179 100,065

Table 8.1: Dataset summary outlining the number of 30 second EEG recordings belonging to each
sleep stage class.

151

SC. It is important to note that the SC study is conducted in the subject’s homes, not a
sleep center and hence this dataset is inherently noisy. However, the sensing environ-
ment is still relatively controlled since sleep doctors visited the patient’s home to setup
the wearable EEG sensors. After obtaining the data, the recordings are manually classi-
fied into one of eight classes (W, N1, N2, N3, N4, REM, MOVEMENT, UNKNOWN);
we follow the steps in [318] and merge stages N3 and N4 into a single N3 stage and
exclude MOVEMENT and UNKNOWN stages to match the five stages of sleep accord-
ing to the American Academy of Sleep Medicine (AASM) [350]. Each single channel
EEG recording of 30 seconds corresponds to a vector of dimension 1× 3000. Similar to
[316], while scoring at time i, we include EEG recordings from times i−3, i−2, i−1, i.
Thus we expand the EEG vector by concatenating the previous three time steps to create
a vector of size 1 × 12000. After pre-processing the data, our dataset consists of 42,191
EEG recordings, each described by a 12,000 length vector and assigned a sleep stage
label from Wake, N1, N2, N3 and REM using the Fpz-Cz EEG sensor (see Table 8.1
for sleep stage breakdown). Following standard practice [318], we divide the dataset on
a per-patient, whole-night basis, using 80% for training, 10% for validation, and 10%
for testing. That is, a single patient is recorded for one night and can only be in one of
the three sets (training, validation, testing). The final number of EEG recordings in their
respective splits are 34,820, 5,345 and 3,908. While the number of recordings appear to
differ from the 80-10-10 ratio, this is because the data is split over the total number of
patients, where each patient is monitored for a time period of variable length (9 hours ±
few minutes.)

• Sleep Heart Health Study (SHHS): The Sleep Heart Health Study consists of two
rounds of polysomnographic recordings (SHHS-1 and SHHS-2) sampled at 125 Hz in
a sleep center environment. Following [316], we use only the first round (SHHS-1) con-
taining 5,793 polysomnographic records over two channels (C4-A1 and C3-A2). Record-
ings are manually classified into one of six classes (W, N1, N2, N3, N4 and REM). As
suggested in [350], we merge N3 and N4 stages into a single N3 stage (see Table 8.1 for
sleep stage breakdown). We use 100 distinct patients randomly sampled from the origi-
nal dataset (one night per patient). Similar to [316], we look at three previous time steps
in order to score the EEG recording at the current time step. This amounts to concatenat-
ing the current EEG recording of size 1 × 3750 (equal to 125 Hz × 30 Hz) to generate
an EEG recording of size 1 × 15000. After this pre-processing, our dataset consists of
100,065 EEG recordings, each described by a 15,000 length vector and assigned a sleep
stage label from the same 5 classes using the Fpz-Cz EEG sensor. We use the same 80-
10-10 data split as in Sleep-EDF, resulting in 79,940 EEG recordings for training, 9,999

152

for validation, and 10,126 for testing.

8.4.2 Model Architecture and Configurations

We use the sleep staging CNN architecture proposed by [316], since it achieves state-of-
the-art accuracy for sleep stage classification using single channel EEG. We implement
all models in PyTorch 0.4. For training and evaluation, we use a server equipped with
an Intel Xeon E5-2690 CPU, 250GB RAM and 8 Nvidia Titan Xp GPUs. Mobile device
measurements use a Pixel 2 smartphone with an Android application running Tensorflow
Lite1. With [316] as the architecture for all baselines below, we compare the following 6
configurations:

1. Sors [316]: Baseline neural network model trained on unperturbed data. This model
contains 12 1-D convolutional layers followed by 2 fully connected layers and achieves
state-of-the-art performance on sleep staging using single channel EEG.

2. Liu [339]: We train on unperturbed data and compress the Sors model using sparsity
regularization as proposed in [339].

3. Blanco [351]: We use same setup from Liu above. During test time, the noisy test input
is filtered using a bandpass filter with cutoff 0.5Hz-40Hz This technique is commonly
used for removing noise in EEG analysis [351].

4. Ford [331]: We train and compress the Sors model with sparsity regularization on input
data perturbed by Gaussian noise. Gaussian training parameter cg = 0.2 controls the
perturbation strength during training; identified through a line search in Section 8.4.4.

5. REST (A): Our compressed Sors model obtained through adversarial training and spar-
sity regularization. We use the hyperparameters: ε = 10, niter= 5/10 (SHHS/Sleep-EDF),
where ε is a key variable controlling the strength of adversarial perturbation during train-
ing. The optimal ε value is determined through a line search described in Section 8.4.4.

6. REST (A+S): Our compressed Sors model obtained through adversarial training, spec-
tral and sparsity regularization. We set the spectral regularization parameter λo = 3 ×
10−3 and sparsity regularization parameter λg = 10−5 based on a grid search in Sec-
tion 8.4.4.
1TensorFlow Lite: https://www.tensorflow.org/lite

153

https://www.tensorflow.org/lite

All models are trained for 30 epochs using SGD. The initial learning rate is set to 0.1
and multiplied by 0.1 at epochs 10 and 20; the weight decay is set to 0.0002. All com-
pressed models use the same compression method, consisting of weight pruning followed
by model re-training. The sparsity regularization parameter λg = 10−5 is identified through
a grid search with λo (after determining ε through a line search). Detailed analysis of the
hyperparameter selection for ε, λo and λg can be found in Section 8.4.4. Finally, we set
a high sparsity level s = 0.8 (80% neurons from the original networks were pruned) after
observation that the models are overparametrized for the task of sleep stage classification.

8.4.3 Evaluation Metrics

Noise robustness metrics To study the noise robustness of each model configuration, we
evaluate macro-F1 score in the presence of three types of noise: adversarial, Gaussian and
shot. We select macro-F1 since it is a standard metric for evaluating classification perfor-
mance in imbalanced datasets. Adversarial noise is defined at three strength levels through
ε = 2/6/12 in Equation 8.2; Gaussian noise at three levels through cg = 0.1/0.2/0.3 in
Equation 8.8; and shot noise at three levels through cs = 5000/2500/1000 in Equation 8.9.
These parameter values are chosen based on prior work [294, 332] and empirical observa-
tion. For evaluating robustness to adversarial noise, we assume the white box setting where
the attacker has access to model weights. The formulation for Gaussian and shot noise is
in Equation 8.8 and 8.9, respectively.

Xgauss = X + N (0 , cg · σtrain) (8.8)

In Equation 8.8, σtrain is the standard deviation of the training data and N is the
normal distribution. The noise strength—low, medium and high—corresponds to cg =

0.1/0.2/0.3.

Xnorm =
X− xmin

xmax − xmin

X′ = clip0 ,1

(
Poisson(Xnorm .cs)

cs

)
Xshot = X′.(xmax − xmin) + xmin

(8.9)

In Equation 8.9, xmin, xmax denote the minimum and maximum values in the training
data; and clip0,1 is a function that projects the input to the range [0,1].

Model efficiency metrics To evaluate the efficiency of each model configuration, we use
the following measures:

154

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

Sleep-EDF
Averaged

SHHS
Averaged

Train Epsilon

Select ε with highest
average macro-F1

Figure 8.3: Line search results for ε on Sleep-EDF and SHHS datasets. We select ε=10, since it
provides the best average macro-F1 score on both datasets.

• Parameter Reduction: Memory consumed (in KB) for storing the weights of a model.

• Floating point operations (FLOPS): Number of multiply and add operations performed
by the model in one forward pass. Measurement units are Mega (106).

• Inference Time: Average time taken (in seconds) to score one night of EEG data. We
assume a night consists of 9 hours and amounts to 1,080 EEG recordings (each of 30
seconds). This is measured on a Pixel 2 smartphone.

• Energy Consumption: Average energy consumed by a model (in Joules) to score one
night of EEG data on a Pixel 2 smartphone. To measure consumed energy, we implement
an infinite inference loop over EEG recordings until the battery level drops from 100%

down to 85%. For each unit percent drop (i.e., 15 levels), we log the number of iterations
Ni performed by the model. Given that a standard Pixel 2 battery can deliver 2700 mAh
at 3.85 Volts, we use the following conversion to estimate energy consumedE (in Joules)
for a unit percent drop in battery level E = 2700

1000
× 3600 × 3.85. The total energy for

inferencing over an entire night of EEG recordings is then calculated as E
Ni
×1080 where

Ni is the number of inferences made in the unit battery drop interval. We average this for
every unit battery percentage drop from 100% to 85% (i.e., 15 intervals) to calculate the
average energy consumption

8.4.4 Hyperparameter Selection

Optimal hyper-parameter selection is crucial for obtaining good performance with both
baseline and REST models. We systematically conduct a series of line and grid searches to
determine ideal values of ε, cg, λo and λg using the validation sets.

Selecting ε This parameter controls the perturbation strength of adversarial training in

155

Guassian F1

cg Benign F1 Low Med High Average F1

E
D

F 0.1 0.75 0.76 0.7 0.5 0.68
0.2 0.7 0.72 0.75 0.64 0.70
0.3 0.67 0.68 0.71 0.75 0.7025

SH
H

S 0.1 0.69 0.74 0.45 0.21 0.52
0.2 0.68 0.69 0.68 0.43 0.62
0.3 0.55 0.57 0.65 0.74 0.63

Table 8.2: Line search results for identifying optimal cg on Sleep-EDF and SHHS datasets. Macro-
F1 is abbreviated F1 in table; average macro-F1 is the mean of all macro-F1 scores. We select
cg=0.2 for both datasets as it represents a good trade-off between benign and Gaussian macro-F1.

Equation 8.2. Correctly setting this parameter is critical since a small ε value will have no
effect on noise robustness, while too high a value will lead to poor benign accuracy. We
follow standard procedure and determine the optimal ε on a per-dataset basis [294], con-
ducting a line search across ε ∈ [0,30] in steps of 2. For each value of ε we measure benign
and adversarial validation macro-F1 score, where adversarial macro-F1 is an average of
three strength levels: low (ε=2), medium (ε=6) and high (ε=12). We then select the ε with
highest macro-F1 score averaged across the benign and adversarial macro-F1. Line search
results are shown in Figure 8.3; we select ε = 10 for both dataset since it’s the value with
highest average macro-F1.

Adversarial F1

λo λg Benign F1 Low Med High Avg. F1

0.001 1E-04 0.73 0.66 0.65 0.61 0.66
0.003 1E-04 0.72 0.64 0.63 0.59 0.65
0.005 1E-04 0.72 0.65 0.64 0.62 0.66
0.001 1E-05 0.73 0.66 0.65 0.62 0.67
0.003 1E-05 0.73 0.67 0.66 0.62 0.67
0.005 1E-05 0.73 0.64 0.64 0.62 0.66

Table 8.3: Grid search results for λo and λg on Sleep-EDF dataset. Macro-F1 is abbreviated as F1
in table; average macro-F1 is the mean of all macro-F1 scores. We select λo and λg with highest
average macro-F1 score.

Selecting cg This parameter controls the noise perturbation strength of Gaussian training
in Equation 8.8. Similar to ε, we determine cg on a per-dataset basis, conducting a line
search across cg values: 0.1 (low), 0.2 (medium) and 0.3 (high). Based on results from

156

Adversarial Gaussian Shot

Data Method Compress No noise Low Med High Low Med High Low Med High

Sl
ee

p-
E

D
F

Sors [316] 7 0.67± 0.02 0.57± 0.02 0.51± 0.04 0.19± 0.06 0.66± 0.03 0.60± 0.03 0.39± 0.08 0.58± 0.04 0.42± 0.08 0.11± 0.03

Liu [339] 3 0.69± 0.02 0.52± 0.07 0.41± 0.07 0.09± 0.02 0.67± 0.02 0.53± 0.02 0.28± 0.04 0.52± 0.03 0.31± 0.04 0.06± 0.01
Blanco [351] 3 0.68± 0.01 0.51± 0.06 0.40± 0.06 0.09± 0.02 0.65± 0.02 0.54± 0.04 0.31± 0.10 0.53± 0.04 0.34± 0.09 0.08± 0.02
Ford [331] 3 0.64± 0.01 0.59± 0.01 0.60± 0.02 0.31± 0.08 0.65± 0.01 0.67± 0.02 0.57± 0.03 0.67± 0.02 0.60± 0.02 0.10± 0.01

REST (A) 3 0.66± 0.02 0.64± 0.02 0.64± 0.02 0.61± 0.02 0.66± 0.02 0.67± 0.01 0.66± 0.01 0.67± 0.01 0.66± 0.01 0.42± 0.06
REST (A+S) 3 0.69± 0.01 0.67± 0.02 0.66± 0.01 0.61± 0.03 0.69± 0.01 0.68± 0.01 0.67± 0.02 0.68± 0.01 0.67± 0.02 0.42± 0.08

SH
H

S

Sors [316] 7 0.78± 0.01 0.62± 0.03 0.46± 0.03 0.33± 0.00 0.64± 0.03 0.43± 0.02 0.35± 0.04 0.69± 0.02 0.59± 0.03 0.45± 0.01

Liu [339] 3 0.77± 0.01 0.61± 0.02 0.49± 0.04 0.34± 0.03 0.66± 0.05 0.45± 0.05 0.34± 0.04 0.70± 0.04 0.62± 0.04 0.47± 0.05
Blanco [351] 3 0.77± 0.01 0.60± 0.03 0.47± 0.04 0.33± 0.02 0.64± 0.07 0.43± 0.05 0.34± 0.04 0.67± 0.06 0.59± 0.05 0.46± 0.04
Ford [331] 3 0.62± 0.02 0.59± 0.01 0.62± 0.00 0.59± 0.05 0.66± 0.00 0.75± 0.04 0.47± 0.10 0.65± 0.00 0.68± 0.01 0.74± 0.04

REST (A) 3 0.70± 0.01 0.68± 0.00 0.70± 0.01 0.67± 0.01 0.72± 0.01 0.76± 0.01 0.58± 0.03 0.72± 0.01 0.74± 0.01 0.76± 0.01
REST (A+S) 3 0.72± 0.01 0.69± 0.01 0.70± 0.01 0.69± 0.02 0.74± 0.01 0.77± 0.01 0.62± 0.03 0.73± 0.01 0.75± 0.01 0.78± 0.00

Table 8.4: Meta Analysis: Comparison of macro-F1 scores achieved by each model. The models
are evaluated on Sleep-EDF and SHHS datasets with three types and strengths of noise corruption.
We bold the compressed model with the best performance (averaged over 3 runs) and report the
standard deviation of each model next to the macro-F1 score. REST performs better in all noise test
measurements.

Table 8.2, we select cg=0.2 for both datasets since it provides the best average macro-F1
score while minimizing the drop in benign accuracy.

Selecting λo and λg These parameters determine the strength of spectral and sparsity
regularization in Equation 8.7. We determine the best value for λo and λg through a grid
search across the following parameter values λo = [0.001, 0.003, 0.005] and λg = [1E −
04, 1E − 05]. Based on results from Table 8.3, we select λo = 0.003 and λg = 1E − 05.
Since these are model dependent parameters, we calculate them once on the Sleep-EDF
dataset and re-use them for SHHS.

8.4.5 Noise Robustness

To evaluate noise robustness, we ask the following questions—(1) what is the impact of
REST on model accuracy with and without noise in the data? and (2) how does REST train-
ing compare to baseline methods of benign training, Gaussian training and noise filtering?
In answering these questions, we analyze noise robustness of models at three scales: (i)
meta-level macro-F1 scores; (ii) meso-level confusion matrix heatmaps; and (iii) granular-
level single-patient hypnograms.

I. Meta analysis: Macro-F1 Scores In Table 8.4, we present a high-level overview of
model performance through macro-F1 scores on three types and strength levels of noise
corruption. The Macro-F1 scores and standard deviation are reported by averaging over
three runs for each model and noise level. We identify multiple key insights as described
below:

157

1. REST Outperforms Across All Types of Noise As demonstrated by the higher macro-
F1 scores, REST outperforms all baseline methods in the presence of noise. In addition,
REST has a low standard deviation, indicating model performance is not dependent on
weight initialization.

2. Spectral Regularization Improves Performance REST (A+S) consistently improves
upon REST (A), indicating the usefulness of spectral regularization towards enhancing
noise robustness by constraining the Lipschitz constant.

3. SHHS Performance Better Than Sleep-EDF Performance is generally better on the
SHHS dataset compared to Sleep-EDF. One possible explanation is due to the SHHS
dataset being less noisy in comparison to the Sleep-EDF dataset. This stems from the
fact that the SHHS study was performed in the hospital setting while Sleep-EDF was
undertaken in the home setting.

4. Benign & Adversarial Accuracy Trade-off Contrary to the traditional trade-off be-
tween benign and adversarial accuracy, REST performance matches Liu in the no noise
setting on sleep-EDF. This is likely attributable to the noise in the Sleep-EDF dataset,
which was collected in the home setting. On the SHHS dataset, the Liu model outper-
forms REST in the no noise setting, where data is captured in the less noise prone hospi-
tal setting. Due to this, REST models are best positioned for use in noisy environments
(e.g., at home); while traditional models are more effective in controlled environments
(e.g., sleep labs).

II. Meso Analysis: Per-class Performance We visualize and identify class-wise trends
using confusion matrix heatmaps (Fig. 8.4). Each confusion matrix describes a model’s
performance for a given level of noise (or no noise). A model that is performing well should
have a dark diagonal and light off-diagonal. We normalize the rows of each confusion
matrix to accurately represent class predictions in an imbalanced dataset. When a matrix
diagonal has a value of 1 (dark blue, or dark green) the model predicts every example
correctly; the opposite occurs at 0 (white). Analyzing Figure 8.4, we identify the following
key insights:

1. REST Performs Well Across All Classes REST accurately predicts each sleep stage
(W, N1, N2, N3, REM) across multiple types of noise (Fig. 8.4, bottom 3 rows), as
evidenced by the dark diagonal. In comparison, each baseline method has considerable
performance degradation (light diagonal) in the presence of noise. This is particularly
evident on the Sleep-EDF dataset (left half) where data is collected in the noisier home
environment.

158

2. N1 Class Difficult to Predict When no noise is present (Fig. 8.4, top row), each method
performs well as evidenced by the dark diagonal, except on the N1 sleep stage class.
This performance drop is likely due to the limited number of N1 examples in the datasets
(see Table 8.1).

3. Increased Misclassification Towards “Wake” Class On the Sleep-EDF dataset, shot
and adversarial noise cause the baseline models to mispredict classes as Wake. One
possible explanation is that the models misinterpret the additive noise as evidence for
the wake class which has characteristically large fluctuations.

Shot

No Noise

Adversarial

Gaussian

R���(A+S) R���(A+S)Blanco FordLiuSors Blanco FordLiuSors

SHHSSleep-EDF

N1

N1

N2

N2

N3

N3
W
W

R

R 1 1

0 0
Our approach is more accurate in the

presence of noise (i.e., darker diagonals)

(high)

(high)

(high)

Figure 8.4: Meso Analysis: Class-wise comparison of model predictions. The models are evaluated
over the SHHS test set perturbed with different noise types. In each confusion matrix, rows are
ground-truth classes while columns are predicted classes. The intensity of a cell is obtained by
normalizing the score with respect to the class membership. When a cell has a value of 1 (dark
blue, or dark green) the model predicts every example correctly, the opposite occurs at 0 (white).
A model that is performing well would have a dark diagonal and light off-diagonal. REST has the
darkest cells along the diagonal on both datasets.

III. Granular Analysis: Single-patient Hypnograms We want to more deeply understand
how our REST models counteract noise at the hypnogram level. Therefore, we select a
test set patient from the SHHS dataset, and generate and visualize the patient’s overnight
hypnograms using the Sors and REST models on three levels of Gaussian noise corruption
(Figure 8.5). Each of these hypnograms is compared to a trained technicians hypnogram
(expert scored in Fig. 8.5), representing the ground-truth. We inspect a few more test set
patients using the above approach, and identify multiple key representative insights:

1. Noisy Environments Require Robust Models As data noise increases, Sors perfor-
mance degrades. This begins at the low noise level, further accelerates in the medium

159

Expert
Scored

No Noise

Low Noise
(Gaussian)

(Gaussian)
Med Noise

(Gaussian)
High Noise

Rest(A+S) ModelState-of-the-Art Model

W
N1
N2
N3

REM

0 200 400 600 800 1000

Our approach is accurate across
all levels of environmental noise

Performance degrades with
increasing environmental noise

Time

Figure 8.5: Granular Analysis: Comparison of the overnight hypnograms obtained for a patient in
the SHHS test set. The hypnograms are generated using the Sors (left) and REST (right) models in
the presence of increasing strengths of Gaussian noise. When no noise is present (top row), both
models perform well, closely matching the ground truth (bottom row). However, with increasing
noise, Sors performance rapidly degrades, while REST continues to generate accurate hypnograms.

Inference Time

Energy Usage

909

Sors

SHHS

Sleep-
EDF

Sleep-
EDF

SHHS

R��� >9x faster

>6x

17x more efficient

>9x

302

355

31

57

53

1143

(in seconds; shorter is better)

(in joules; shorter is better)

123

Figure 8.6: Time and energy consumption for scoring a single night of EEG recordings.
REST(A+S) is significantly faster and more energy efficient than the state-of-the-art Sors model.
Evaluations were done on a Pixel 2 smartphone.

level and reaches nearly zero at the high level. In contrast, REST effectively handles all
levels of noise, generating an accurate hypnogram at even the highest level.

2. Low Noise Environments Give Good Performance In the no noise setting (top row)
both the Sors and REST models generate accurate hypnograms, closely matching the
contours of expert scoring (bottom).

160

Data Model Size (KB) MFlops

Sl
ee

p-
E

D
F

Sors [316] 8,896 1451
Liu [339] 440 127
Blanco [351] 440 127
Ford [331] 448 144
REST (A) 464 98
REST (A+S) 449 94

SH
H

S
Sors [316] 8,996 1815
Liu [339] 464 211
Blanco [351] 464 211
Ford [331] 478 170
REST (A) 476 160
REST (A+S) 496 142

Table 8.5: Comparison on model size and the FLOPS required to score a single night of EEG
recordings. REST models are significantly smaller and comparable in size/compute to baselines.

8.4.6 Model Efficiency

We measure model efficiency along two dimensions—(1) static metrics: amount of mem-
ory required to store weights in memory and FLOPS; and (2) dynamic metrics: inference
time and energy consumption. For dynamic measurements that depend on device hardware,
we deploy each model to a Pixel 2 smartphone.

Analyzing Static Metrics: Memory & Flops Table 8.5 describes the size (in KB) and
computational requirements (in MFlops) of each model. We identify the following key
insights:

1. REST Models Require Fewest FLOPS On both datasets, REST requires the least num-
ber of FLOPS.

2. REST Models are Small REST models are also smaller (or comparable) to baseline
compressed models while achieving significantly better noise robustness.

3. Model Efficiency and Noise Robustness Combining the insights from Section 8.4.5
and the above, we observe that REST models have significantly better noise robustness
while maintaining a competitive memory footprint. This suggests that robustness is
more dependent on the the training process, rather than model capacity.

Analyzing Dynamic Metrics: Inference Time & Energy In Figure 8.6, we benchmark
the inference time and energy consumption of a Sors and REST model deployed on a Pixel
2 smartphone using Tensorflow Lite. We identify the following insights:

1. REST Models Run Faster When deployed, REST runs 9× and 6× faster than the un-

161

compressed model on the two datasets.

2. REST Models are Energy Efficient REST models also consume 17× and 9× less en-
ergy than an uncompressed model on the Sleep-EDF and SHHS datasets, respectively.

3. Enabling Sleep Staging for Edge Computing The above benefits demonstrate that
model compression effectively translates into faster inference and a reduction in energy
consumption. These benefits are crucial for deploying on the edge.

8.5 Conclusion

We identified two key challenges in developing deep neural networks for sleep monitoring
in the home environment—robustness to noise and efficiency. We proposed to solve these
challenges through REST—a new method that simultaneously tackles both issues. For the
sleep staging task over electroencephalogram (EEG), REST trains models that achieve up
to 19× parameter reduction and 15×MFLOPS reduction with an increase of up to 0.36 in
macro-F-1 score in the presence of noise. By deploying these models to a smartphone, we
demonstrate that REST achieves up to 17× energy reduction and 9× faster inference.

162

Part V

Conclusions

163

CHAPTER 9
CONCLUSION AND FUTURE DIRECTIONS

This dissertation addresses the applied and theoretical challenges facing us in healthcare
and cybersecurity—two of the most high impact domains—by developing new graph min-
ing algorithms, deep learning models, large-scale databases, and open-source code. My
research advances the frontiers of our technical understanding of data-driven disciplines in
cybersecurity and healthcare, empowering people to make new discoveries and advances
that positively impact millions of people across the world.

9.1 Research Contributions

New graph algorithms and deep learning models.

• We construct D2M, the first graph theoretic framework that systematically quantifies
network vulnerability to lateral attack and identifies at-risk devices (Chapter 4).

• We develop REST, the first noise-robust and efficient deep learning model designed
for at-home sleep monitoring by endowing models with noise robustness through
(1) adversarial training and (2) spectral regularization; and promoting energy and
computational efficiency by enabling compression through (3) sparsity regulariza-

tion (Chapter 8).

• We contribute UNMASK, the first deep learning framework using semantic coherence
to detect and defeat adversarial attacks by quantifying the similarity between the im-
age’s extracted features with the expected features of its predicted class (Chapter 7).

Large-Scale Databases.

• We introduce MALNET-GRAPH, the largest public graph database ever constructed,
representing a large-scale ontology of software function call graphs. MALNET-
GRAPH contains over 1.2 million graphs, averaging over 17k nodes and 39k edges
per graph, across a hierarchy of 47 types and 696 families. Compared to the popu-
lar REDDIT-12K database, MALNET-GRAPH offers 105× more graphs, 44× larger
graphs on average, and 63× more classes (Chapter 5).

• We introduce MALNET-IMAGE, the largest publicly available cybersecurity image
database, offering 24× more images and 70× more classes than existing databases.
The scale and diversity of MALNET-IMAGE unlocks new and exciting cybersecu-

164

rity opportunities to the computer vision community—democratizing image-based
malware capabilities by enabling researchers and practitioners to evaluate techniques
that were previously reported in propriety settings. (Chapter 6).

Open source tools and knowledge repositories.

• We contribute TIGER, the first open-sourced Python toolbox for graph vulnerability
and robustness analysis. TIGER contains 22 graph robustness measures with both
original and fast approximate versions; 17 failure and attack strategies; 15 heuristic
and optimization based defense techniques; and 4 simulation tools (Chapter 3).

• We distill key findings across numerous graph vulnerability and robustness domains
in the form of a survey paper, providing researchers access to crucial knowledge by—
(1) summarizing recent and classical graph robustness measures; (2) exploring which
robustness measures are most applicable to different domains (e.g., social, infrastruc-
ture); (3) reviewing attack strategy effectiveness across network topologies; and (4)
extensive discussion on selecting defense techniques to mitigate attacks (Chapter 2).

9.2 Impact

• D2M (Chapter 4) has led to major impact to the Microsoft Defender Advanced
Threat Protection product, inspiring changes to the product’s approach to detect
and prevent lateral movement, well known as one of the most challenging areas of
post-breach detection.

• TIGER (Chapter 3) has been integrated into the Nvidia Data Science Teaching
Kit available to educators across the world; and Georgia Tech’s Data and Visual
Analytics class with over 1,000 students.

• UNMASK (Chapter 7) helped win a multi-million dollar DARPA GARD (Guaran-
teeing AI Robustness against Deception) grant.

• MALNET-GRAPH (Chapter 5) represents the worlds largest graph representation
learning database, enabling new research and discoveries into imbalanced classifi-
cation, explainability and the impact of class hardness.

• MALNET-IMAGE (Chapter 6) is the worlds largest binary-image database, un-
locking new and unique opportunities to advance the frontiers of vision-based cyber
defenses, multi-class imbalanced classification, and interpretable security.

• Our innovations in graph mining, deep learning, cybersecurity and healthcare were
recognized and invested in by an IBM PhD Fellowship, a Raytheon Fellowship,

165

and an NSF Graduate Research Fellowship (GRFP).

9.3 Future Directions

The research in this thesis unlocks numerous future research directions, and practical ap-
plications to extend the development of the robust models, algorithms, and databases dis-
cussed in this work.

9.3.1 Advancing Vision Based Cybersecurity Research

Research into developing image-based malware detection and classification algorithms has
recently surged across industry (e.g., Intel-Microsoft collaboration on Stamina [235], se-
curity companies [233, 236]) and academia [237, 238, 239, 240, 241, 249, 250, 251, 252,
253, 254, 255, 256, 247, 257, 258, 245]. However, existing public datasets contain only
a handful of classes and thousands of images, and as the field advances, larger and more
challenging datasets are needed for the next generation of models. With the release of
MALNET-IMAGE in Chapter 6, containing over 1.2 million software images across a hi-
erarchy of 47 types and 696 families, researchers now have access to a critical resource to
develop and benchmark advanced image-based malware detection and classification algo-
rithms, previously restricted to a few industry labs and research teams.

Extending Imbalanced Classification into a New and Diverse High-Impact Domain.

While a large body of research has analyzed binary-images in balanced classification set-
tings, only preliminary work has studied malware detection under data imbalance [253]
due to the limited number of classes and images available in existing datasets. As a re-
sult, it is unknown whether many techniques may generalize to the binary-image domain,
and how they will perform in highly imbalanced classification scenarios. We take a first
step in studying this by analyzing Figure 6.7, where we can see that classes containing
only a few examples typically underperform relative to their more populous counterparts—
highlighting the significant challenge of imbalanced classification in the cybersecurity do-
main. By releasing MALNET-IMAGE, one of the largest naturally imbalanced databases to
date, we hope to foster new interest in this important research area, enabling the machine
learning community to impact and generalize across domains.

166

Interpretable Cybersecurity Research

Preliminary research has demonstrated the importance of attention mechanisms in binary-
image malware classification, where extracted regions can provide strong indicators to hu-
man analysts, helping guide them to suspicious parts of the bytecode for additional anal-
ysis [274, 265]. This includes recent research in salience based methods that automati-
cally discover concepts, helping to identify correlated regions of bytecode [276]. Prior to
MALNET-IMAGE, researchers were limited to a small number of malicious families and
types, hindering their ability to conduct large-scale explainability studies. With MALNET-
IMAGE’s nearly 700 classes, researchers can explore a wide variety of malicious software,
enabling new breakthroughs and discoveries. For example, researchers might discover that
new types of visualization and sense-making techniques are needed to accurately sum-
marize large volumes of binary-image data to enhance security analysts decision making
capabilities.

9.3.2 Advancing Graph Representation Learning Research

In Chapter 5, we show that MALNET-GRAPH unlocks new and unique opportunities to
advance the frontiers of graph representation learning by enabling research into imbalanced

classification, explainability, and the impact of class hardness.

Class Hardness Exploration

Because of MALNET-GRAPH’s large diversity, it is now possible for researchers to explore
why certain classes are more challenging to classify than others. For example, Figure 8.4
shows Malware++Trj significantly outperforming both Troj and Adsware, which contain
many more examples. This result is surprising, and provides strong impetus for additional
research into class hardness, such as: (a) investigating whether existing methods are flex-
ible enough to represent the diverse graph structures; and (b) inviting researchers to study
the similarities across class types (e.g. merge Spr and Spyware). To support further devel-
opment in this challenging area, we release the raw VirusTotal reports containing up to 70
labels per graph.

Imbalanced Classification Research

The natural world often follows a long-tailed data distribution where only a few classes
account for most of the examples [194]. As evidenced in discovery Chapter 5, the long-
tail often causes classifiers to perform well on the majority class, but poorly on rare ones.
Unfortunately, imbalanced classification research in the graph domain has yet to receive

167

much attention, largely because no datasets existed to support the research. By releasing
MALNET-GRAPH, the largest naturally imbalanced database to date, we hope foster new
interest in this important area.

Reconsidering Merits of Simpler Approaches

In Chapter 5, we show that simpler methods can match or outperform more recent and
sophisticated techniques, suggesting that current techniques aiming to capture graph topol-
ogy are not yet well-reflected for non-attributed graphs, echoing results from [179]. More
broadly, our discovery demonstrates—for the first time—such phenomenon at the unprece-
dented scale and diversity offered by MALNET-GRAPH. We believe our results will inspire
researchers to reconsider the merits of simpler approaches and classic techniques, and to
build on them to reap their benefits.

Enabling Explainable Research

In Figure 8.4 of Chapter 5, we observe that certain representation techniques better cap-
ture particular graph types. For example, Feather, GIN and GCN significantly outperforms
other methods on Clicker++Trojan. This is an interesting result, as it could provide in-
sight into when one technique is preferred over another (e.g., local neighborhood structure,
global graph structure, graph motifs). We believe that the wide range of graph topology
and substructures contained in MALNET-GRAPH’s nearly 700 classes will enable new ex-
plainability research.

9.3.3 Robust Tools and Algorithms

Through careful analysis of the robustness literature, we identify and distill open problems
that have strong potential as future research directions.

Guidelines for Selecting & Developing Measures

Comparing robustness measures in a quantitative manner is still an open challenge. While
many works have qualitatively remarked on why certain robustness measures are better
suited for certain tasks, there has been no formal study outlining desirable characteristics
that a robustness measure should contain. By formalizing these desirable properties into a
set axioms, future and existing robustness measures could be compared in an independent
and quantitative manner, something that is not currently available. We identified 6 desirable
robustness properties across the literature that could form the basis for an axiomatic anal-

168

ysis of robustness measures [25, 26, 47]. Below, we provide the intuition for each axiom,
however, each axiom needs to be formalized and (dis)proven for each robustness measure.

1. Strictly Monotonic. When an edge is added to a graph the network connectivity is intrin-
sically enhanced. A robustness measure should account for this increased connectivity
by strictly increasing (or decreasing) for each edge added to the graph.

2. Redundancy. A critical ability of any robustness measure is to measure redundancy
present in the network. This means that if multiple paths between two nodes exist, the
proposed measure should be able to account for both the number of paths and their
quality (where smaller paths are better).

3. Disconnected. Many real-world graphs contain disconnected components; therefore a
measure should be able to evaluate a graphs’ robustness independent of the number of
disconnected components.

4. Stable. A robustness measure should change in proportion to the perturbation of the
graph structure. For example, if a single edge is added to a graph, we expect that the
measure has a proportionally small response.

5. Consistent. Given two graphs with same underlying structure, we would expect them to
have similar robustness independent of their size.

6. Scalable. Large graphs containing millions (or sometimes billions) of nodes and edges
are common. A robustness measure should be scalable to large graphs, where we define
scalable as an algorithm subquadratic with respect to the number of nodes and edges.

7. Intuitive. Ideally, we want robustness measures to have identifiable connections to the
underlying graph topology, and for these connections to be conveyable to non-experts
in an understandable manner.

Furthering Interpretability

Ideally, robustness measure should have identifiable connections to the underlying graph
topology to explain what the robustness score is indicative of. Recent research has ex-
plored this in the more general domains of graph connectivity and ranking [143, 144, 145,
146]. Combining visual representations, helpful interactions, and state-of-the-art attribu-
tion and feature visualization techniques together into rich user interfaces could lead to
major breakthroughs in understanding graph vulnerability and robustness scores.

169

Studying Robustness in New Domains

The study of graph vulnerability and robustness is still nascent in the areas of physical se-
curity [44], cybersecurity [59] and interdependent and dynamic networks [147]. For phys-
ical security, [44] studies the vulnerability and robustness of physical sensor placement to
maximize perimeter security while minimizing network latency. They find that perimeter
security systems frequently map to circular lattices which suffer from a trade-off between
robustness and mean path length (i.e., latency). Future work could analyze alternative
perimeter system mappings that optimize for both criteria, while exploring alternative def-
initions of robustness in physical security. With respect to cybersecurity, [59] attempts to
calculate the vulnerability and robustness of enterprise networks by modeling lateral attack
movement between computers. However, their unique probabilistic robustness measure
is dependent on cyber domain knowledge and the running of many simulations. Future
cybersecurity robustness analysis could explore the development of robustness measures
that are simulation independent, reducing computational costs and the need for explicit
domain knowledge. Many real-world networks are often dynamic and contain multiple
interdependent sub-networks. While initial work has looked at real-time robustification of
interdependent networks from an edge perspective [147], additional work needs to be done
to (i) study dynamic graphs, (ii) comprehensively evaluate various attack and defense sce-
narios, and (iii) develop unique robustness measures that can better account for the nature
of inter-dependent and dynamic networks.

Bridging Graph Robustness & Adversarial Machine Learning

From the machine learning perspective, a majority of current graph robustness research fo-
cuses on manipulating graph classifiers or embedding mechanisms into mispredicting the
label of a graph [148], or the label of each node in the graph [149]. So far, adversarial ma-
chine learning research has yet to deeply delve into the more richly defined network robust-
ness objective centered around a networks’ ability to continue functioning when damaged
or attacked. However, we believe that there are multiple high-impact connections to ex-
plore, including: (1) how does a graph’s spectral robustness (e.g., spectral gap) correlate to
the vulnerability or robustness of downstream tasks such as node and graph classifiers be-
ing attacked; and (2) does optimizing a graph’s spectral robustness (e.g., adding or rewiring
edges) affect an attackers ability to perturb downstream node and graph classification mod-
els. By answering these questions, we can uncover new mechanisms to attack and defend
networks while gaining insight into fundamental connections between two important and
growing fields.

170

Developing New Open-Source Tools

While TIGER contains numerous tools and techniques for studying the vulnerability and
robustness of networks, future work should look at more complex networks e.g., multi-
layer networks, directed graphs, weighted graphs; coordinated attack strategies; and more
advanced robustness measures that can account for the additional information contained in
complex networks.

171

REFERENCES

[1] P. McDaniel, J. Launchbury, B. Martin, C. Wang, and H. Kautz, “Artificial intelli-
gence and cyber security: Opportunities and challenges technical workshop sum-
mary report,” 2020.

[2] T. C. of Economic Advisers, “The cost of malicious cyber activity to the u.s. econ-
omy,” 2018.

[3] CrowdStrike, “Blurring the lines between statecraft and tradecraft,” Global Threat
Report,

[4] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densification laws,
shrinking diameters and possible explanations,” in Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining,
2005, pp. 177–187.

[5] H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos, and D. H.
Chau, “On the vulnerability of large graphs,” in 2010 IEEE International Confer-
ence on Data Mining, IEEE, 2010, pp. 1091–1096.

[6] A. Hagberg, N. Lemons, A. Kent, and J. Neil, “Connected components and creden-
tial hopping in authentication graphs,” in SITIS, IEEE, 2014, pp. 416–423.

[7] S Duckwall and C Campbell, “Hello my name is microsoft and i have a credential
problem,” Blackhat USA 2013 White Papers, 2013.

[8] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in 2010
International conference on broadband, wireless computing, communication and
applications, IEEE, 2010, pp. 297–300.

[9] T. Dullien and R. Rolles, “Graph-based comparison of executable objects,” SSTIC,
2005.

[10] V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature generation and
detection of malware families,” in Australasian Conference on Information Security
and Privacy, Springer, 2008, pp. 336–349.

[11] B. Gallagher, “Matching structure and semantics: A survey on graph-based pattern
matching.,” in AAAI Fall Symposium: Capturing and Using Patterns for Evidence
Detection, 2006, pp. 45–53.

172

[12] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing using function-
call graphs,” in Proceedings of the 16th ACM conference on Computer and com-
munications security, ACM, 2009, pp. 611–620.

[13] J. Kinable and O. Kostakis, “Malware classification based on call graph clustering,”
Journal in computer virology, vol. 7, no. 4, pp. 233–245, 2011.

[14] O. Kostakis, J. Kinable, H. Mahmoudi, and K. Mustonen, “Improved call graph
comparison using simulated annealing,” in Proceedings of the 2011 ACM Sympo-
sium on Applied Computing, ACM, 2011, pp. 1516–1523.

[15] D. Kong and G. Yan, “Discriminant malware distance learning on structural in-
formation for automated malware classification,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, ACM,
2013, pp. 1357–1365.

[16] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection of android
malware using embedded call graphs,” in Proceedings of the 2013 ACM workshop
on Artificial intelligence and security, ACM, 2013, pp. 45–54.

[17] H. Jiang, T. Turki, and J. T. Wang, “Dlgraph: Malware detection using deep learning
and graph embedding,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), IEEE, 2018, pp. 1029–1033.

[18] S. Ranveer and S. Hiray, “Comparative analysis of feature extraction methods of
malware detection,” International Journal of Computer Applications, vol. 120, no. 5,
2015.

[19] B. M. Altevogt, H. R. Colten, et al., Sleep disorders and sleep deprivation: an
unmet public health problem. National Academies Press, 2006.

[20] A. A. of Sleep Medicine et al., “Economic burden of undiagnosed sleep apnea in
us is nearly $150 billion per year,” Published on the American Academy of Sleep
Medicine’s official website, on August, vol. 8, 2016.

[21] V. Chvátal, “Tough graphs and hamiltonian circuits,” Discrete Mathematics, vol. 5,
no. 3, pp. 215–228, 1973.

[22] D. J. Klein and M. Randić, “Resistance distance,” Journal of mathematical chem-
istry, vol. 12, no. 1, pp. 81–95, 1993.

[23] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, “Improving network robust-
ness by edge modification,” Physica A: Statistical Mechanics and its Applications,
vol. 357, no. 3-4, pp. 593–612, 2005.

173

[24] M. S. Krishnamoorthy and B. Krishnamurthy, “Fault diameter of interconnection
networks,” Computers & Mathematics with Applications, vol. 13, no. 5-6, pp. 577–
582, 1987.

[25] W. Ellens and R. E. Kooij, “Graph measures and network robustness,” arXiv preprint
arXiv:1311.5064, 2013.

[26] H. Chan and L. Akoglu, “Optimizing network robustness by edge rewiring: A gen-
eral framework,” Data Mining and Knowledge Discovery, vol. 30, no. 5, pp. 1395–
1425, 2016.

[27] A. Yazdani and P. Jeffrey, “Applying network theory to quantify the redundancy and
structural robustness of water distribution systems,” Journal of Water Resources
Planning and Management, vol. 138, no. 2, pp. 153–161, 2012.

[28] O. Lordan, J. M. Sallan, and P. Simo, “Study of the topology and robustness of
airline route networks from the complex network approach: A survey and research
agenda,” Journal of Transport Geography, vol. 37, pp. 112–120, 2014.

[29] G. A. Pagani and M. Aiello, “The power grid as a complex network: A survey,”
Physica A: Statistical Mechanics and its Applications, vol. 392, no. 11, pp. 2688–
2700, 2013.

[30] L. Cuadra, S. Salcedo-Sanz, J. Del Ser, S. Jiménez-Fernández, and Z. W. Geem,
“A critical review of robustness in power grids using complex networks concepts,”
Energies, vol. 8, no. 9, pp. 9211–9265, 2015.

[31] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex
networks,” nature, vol. 406, no. 6794, pp. 378–382, 2000.

[32] M. J. Alenazi and J. P. Sterbenz, “Evaluation and comparison of several graph ro-
bustness metrics to improve network resilience,” in 2015 7th International Work-
shop on Reliable Networks Design and Modeling (RNDM), IEEE, 2015, pp. 7–13.

[33] ——, “Comprehensive comparison and accuracy of graph metrics in predicting net-
work resilience,” in 2015 11th International Conference on the Design of Reliable
Communication Networks (DRCN), IEEE, 2015, pp. 157–164.

[34] M. B. Baig and L. Akoglu, “Correlation of node importance measures: An em-
pirical study through graph robustness,” in Proceedings of the 24th International
Conference on World Wide Web, 2015, pp. 275–281.

[35] J. S. Baras and P. Hovareshti, “Efficient and robust communication topologies for
distributed decision making in networked systems,” in Proceedings of the 48h IEEE

174

Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese
Control Conference, IEEE, 2009, pp. 3751–3756.

[36] K. Berdica, “An introduction to road vulnerability: What has been done, is done
and should be done,” Transport policy, vol. 9, no. 2, pp. 117–127, 2002.

[37] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman, “Power grid
vulnerability to geographically correlated failures—analysis and control implica-
tions,” in IEEE INFOCOM 2014-IEEE Conference on Computer Communications,
IEEE, 2014, pp. 2634–2642.

[38] A. Bigdeli, A. Tizghadam, and A. Leon-Garcia, “Comparison of network criticality,
algebraic connectivity, and other graph metrics,” in Proceedings of the 1st Annual
Workshop on Simplifying Complex Network for Practitioners, 2009, pp. 1–6.

[39] A. N. Bishop and I. Shames, “Link operations for slowing the spread of disease in
complex networks,” EPL (Europhysics Letters), vol. 95, no. 1, p. 18 005, 2011.

[40] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex net-
works: Structure and dynamics,” Physics reports, vol. 424, no. 4-5, pp. 175–308,
2006.

[41] S. P. Borgatti, K. M. Carley, and D. Krackhardt, “On the robustness of central-
ity measures under conditions of imperfect data,” Social networks, vol. 28, no. 2,
pp. 124–136, 2006.

[42] L. Briesemeister, P. Lincoln, and P. Porras, “Epidemic profiles and defense of scale-
free networks,” in Proceedings of the 2003 ACM workshop on Rapid malcode,
2003, pp. 67–75.

[43] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic
cascade of failures in interdependent networks,” Nature, vol. 464, no. 7291, pp. 1025–
1028, 2010.

[44] R Byrne, J Feddema, and C Abdallah, “Algebraic connectivity and graph robust-
ness,” SANDIA Report, vol. 87185, pp. 1–34, 2005.

[45] J. Caballero, T. Kampouris, D. Song, and J. Wang, “Would diversity really increase
the robustness of the routing infrastructure against software defects?” In NDSS,
Citeseer, 2008.

[46] D. S. Callaway, M. E. Newman, S. H. Strogatz, and D. J. Watts, “Network robust-
ness and fragility: Percolation on random graphs,” Physical review letters, vol. 85,
no. 25, p. 5468, 2000.

175

[47] H. Chan, L. Akoglu, and H. Tong, “Make it or break it: Manipulating robustness
in large networks,” in Proceedings of the 2014 SIAM International Conference on
Data Mining, SIAM, 2014, pp. 325–333.

[48] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epidemic
thresholds in real networks,” ACM Transactions on Information and System Se-
curity (TISSEC), vol. 10, no. 4, pp. 1–26, 2008.

[49] C. Chen, H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Faloutsos,
and D. H. Chau, “Node immunization on large graphs: Theory and algorithms,”
TKDE, vol. 28, no. 1, pp. 113–126, 2015.

[50] C. Chen, J. He, N. Bliss, and H. Tong, “On the connectivity of multi-layered net-
works: Models, measures and optimal control,” in 2015 IEEE International Con-
ference on Data Mining, IEEE, 2015, pp. 715–720.

[51] C. Chen, H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos,
“Eigen-optimization on large graphs by edge manipulation,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 10, no. 4, pp. 1–30, 2016.

[52] P. Crucitti, V. Latora, and M. Marchiori, “Model for cascading failures in complex
networks,” Physical Review E, vol. 69, no. 4, p. 045 104, 2004.

[53] A. H. Dekker, “Simulating network robustness for critical infrastructure networks,”
in ACM International Conference Proceeding Series, Citeseer, vol. 102, 2005, pp. 59–
67.

[54] S. Derrible and C. Kennedy, “The complexity and robustness of metro networks,”
Physica A: Statistical Mechanics and its Applications, vol. 389, no. 17, pp. 3678–
3691, 2010.

[55] Y. Duan and F. Lu, “Robustness of city road networks at different granularities,”
Physica A: Statistical Mechanics and its Applications, vol. 411, pp. 21–34, 2014.

[56] W. Ellens, F. Spieksma, P Van Mieghem, A Jamakovic, and R. Kooij, “Effective
graph resistance,” Linear algebra and its applications, vol. 435, no. 10, pp. 2491–
2506, 2011.

[57] E. Estrada, “Network robustness to targeted attacks. the interplay of expansibility
and degree distribution,” The European Physical Journal B-Condensed Matter and
Complex Systems, vol. 52, no. 4, pp. 563–574, 2006.

[58] ——, “Spectral scaling and good expansion properties in complex networks,” EPL
(Europhysics Letters), vol. 73, no. 4, p. 649, 2006.

176

[59] S. Freitas, A. Wicker, D. H. Chau, and J. Neil, “D2m: Dynamic defense and mod-
eling of adversarial movement in networks,” SDM, pp. 541–549, 2020.

[60] S. Freitas and D. H. Chau, “Evaluating graph vulnerability and robustness using
tiger,” arXiv preprint arXiv:2006.05648, 2020.

[61] J. Gao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Robustness of a network of
networks,” Physical Review Letters, vol. 107, no. 19, p. 195 701, 2011.

[62] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance of a graph,”
SIAM review, vol. 50, no. 1, pp. 37–66, 2008.

[63] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability of complex
networks,” Physical review E, vol. 65, no. 5, p. 056 109, 2002.

[64] Å. J. Holmgren, “Using graph models to analyze the vulnerability of electric power
networks,” Risk analysis, vol. 26, no. 4, pp. 955–969, 2006.

[65] A Jamakovic and S Uhlig, “On the relationship between the algebraic connectivity
and graph’s robustness to node and link failures,” in 2007 Next Generation Internet
Networks, IEEE, 2007, pp. 96–102.

[66] E. B. Khalil, B. Dilkina, and L. Song, “Scalable diffusion-aware optimization of
network topology,” in Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, 2014, pp. 1226–1235.

[67] R. Kinney, P. Crucitti, R. Albert, and V. Latora, “Modeling cascading failures in the
north american power grid,” The European Physical Journal B-Condensed Matter
and Complex Systems, vol. 46, no. 1, pp. 101–107, 2005.

[68] G. W. Klau and R. Weiskircher, “Robustness and resilience,” in Network analysis,
Springer, 2005, pp. 417–437.

[69] V. Latora and M. Marchiori, “Vulnerability and protection of infrastructure net-
works,” Physical Review E, vol. 71, no. 1, p. 015 103, 2005.

[70] L. T. Le, T. Eliassi-Rad, and H. Tong, “Met: A fast algorithm for minimizing prop-
agation in large graphs with small eigen-gaps,” in Proceedings of the 2015 SIAM
International Conference on Data Mining, SIAM, 2015, pp. 694–702.

[71] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
“Cost-effective outbreak detection in networks,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2007,
pp. 420–429.

177

[72] J. Liu, M. Zhou, S. Wang, and P. Liu, “A comparative study of network robustness
measures,” Frontiers of Computer Science, vol. 11, no. 4, pp. 568–584, 2017.

[73] Z.-M. Lu and X.-F. Li, “Attack vulnerability of network controllability,” PloS one,
vol. 11, no. 9, e0162289, 2016.

[74] F. D. Malliaros, V. Megalooikonomou, and C. Faloutsos, “Fast robustness estima-
tion in large social graphs: Communities and anomaly detection,” in Proceedings of
the 2012 SIAM International Conference on Data Mining, SIAM, 2012, pp. 942–
953.

[75] J. L. Marzo, E. Calle, S. G. Cosgaya, D. Rueda, and A. Mañosa, “On selecting the
relevant metrics of network robustness,” in 2018 10th International Workshop on
Resilient Networks Design and Modeling (RNDM), IEEE, 2018, pp. 1–7.

[76] L.-G. Mattsson and E. Jenelius, “Vulnerability and resilience of transport systems–a
discussion of recent research,” Transportation Research Part A: Policy and Prac-
tice, vol. 81, pp. 16–34, 2015.

[77] P. Van Mieghem, D. Stevanović, F. Kuipers, C. Li, R. Van De Bovenkamp, D. Liu,
and H. Wang, “Decreasing the spectral radius of a graph by link removals,” Physical
Review E, vol. 84, no. 1, p. 016 101, 2011.

[78] A. Milanese, J. Sun, and T. Nishikawa, “Approximating spectral impact of struc-
tural perturbations in large networks,” Physical Review E, vol. 81, no. 4, p. 046 112,
2010.

[79] A. E. Motter and Y.-C. Lai, “Cascade-based attacks on complex networks,” Physi-
cal Review E, vol. 66, no. 6, p. 065 102, 2002.

[80] A. Di Nardo, C. Giudicianni, R. Greco, M. Herrera, and G. F. Santonastaso, “Ap-
plications of graph spectral techniques to water distribution network management,”
Water, vol. 10, no. 1, p. 45, 2018.

[81] D. T. Nguyen, Y. Shen, and M. T. Thai, “Detecting critical nodes in interdependent
power networks for vulnerability assessment,” IEEE Transactions on Smart Grid,
vol. 4, no. 1, pp. 151–159, 2013.

[82] M. Parandehgheibi and E. Modiano, “Robustness of interdependent networks: The
case of communication networks and the power grid,” in 2013 IEEE Global Com-
munications Conference (GLOBECOM), IEEE, 2013, pp. 2164–2169.

[83] R. Parshani, S. V. Buldyrev, and S. Havlin, “Interdependent networks: Reducing
the coupling strength leads to a change from a first to second order percolation
transition,” Physical review letters, vol. 105, no. 4, p. 048 701, 2010.

178

[84] G. Paul, T Tanizawa, S. Havlin, and H. E. Stanley, “Optimization of robustness of
complex networks,” The European Physical Journal B, vol. 38, no. 2, pp. 187–191,
2004.

[85] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos, “Virus propaga-
tion on time-varying networks: Theory and immunization algorithms,” in Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2010, pp. 99–114.

[86] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Faloutsos, “Thresh-
old conditions for arbitrary cascade models on arbitrary networks,” Knowledge and
information systems, vol. 33, no. 3, pp. 549–575, 2012.

[87] B. A. Prakash, L. Adamic, T. Iwashyna, H. Tong, and C. Faloutsos, “Fractional
immunization in networks,” in Proceedings of the 2013 SIAM International Con-
ference on Data Mining, SIAM, 2013, pp. 659–667.

[88] D. F. Rueda, E. Calle, and J. L. Marzo, “Robustness comparison of 15 real telecom-
munication networks: Structural and centrality measurements,” Journal of Network
and Systems Management, vol. 25, no. 2, pp. 269–289, 2017.

[89] S. Saha, A. Adiga, B. A. Prakash, and A. Vullikanti, “Approximation algorithms
for reducing the spectral radius to control epidemic spread,” in SDM’15, SIAM,
2015, pp. 568–576.

[90] C. M. Schneider, A. A. Moreira, J. S. Andrade, S. Havlin, and H. J. Herrmann,
“Mitigation of malicious attacks on networks,” Proceedings of the National Academy
of Sciences, vol. 108, no. 10, pp. 3838–3841, 2011.

[91] C. M. Schneider, T. Mihaljev, S. Havlin, and H. J. Herrmann, “Suppressing epi-
demics with a limited amount of immunization units,” Physical Review E, vol. 84,
no. 6, p. 061 911, 2011.

[92] J. Shao, S. V. Buldyrev, S. Havlin, and H. E. Stanley, “Cascade of failures in cou-
pled network systems with multiple support-dependence relations,” Physical Re-
view E, vol. 83, no. 3, p. 036 116, 2011.

[93] B. Shargel, H. Sayama, I. R. Epstein, and Y. Bar-Yam, “Optimization of robust-
ness and connectivity in complex networks,” Physical review letters, vol. 90, no. 6,
p. 068 701, 2003.

[94] A. Sydney, C. Scoglio, P. Schumm, and R. Kooij, “Elasticity: Topological char-
acterization of robustness in complex networks,” arXiv preprint arXiv:0811.4040,
2008.

179

[95] G. Tanaka, K. Morino, and K. Aihara, “Dynamical robustness in complex networks:
The crucial role of low-degree nodes,” Nature, vol. 2, no. 1, pp. 1–6, 2012.

[96] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and C. Faloutsos, “Gelling,
and melting, large graphs by edge manipulation,” in Proceedings of the 21st ACM
international conference on Information and knowledge management, 2012, pp. 245–
254.

[97] L. Torres, K. S. Chan, H. Tong, and T. Eliassi-Rad, “Node immunization with non-
backtracking eigenvalues,” arXiv preprint arXiv:2002.12309, 2020.

[98] S. Trajanovski, J. Martı́n-Hernández, W. Winterbach, and P. Van Mieghem, “Ro-
bustness envelopes of networks,” Journal of Complex Networks, vol. 1, no. 1, pp. 44–
62, 2013.

[99] A. Vespignani, “The fragility of interdependency,” Nature, vol. 464, no. 7291,
pp. 984–985, 2010.

[100] J. Wang, L. Rong, L. Zhang, and Z. Zhang, “Attack vulnerability of scale-free net-
works due to cascading failures,” Physica A: Statistical Mechanics and its Appli-
cations, vol. 387, no. 26, pp. 6671–6678, 2008.

[101] X. Wang, E. Pournaras, R. E. Kooij, and P. Van Mieghem, “Improving robustness
of complex networks via the effective graph resistance,” The European Physical
Journal B, vol. 87, no. 9, pp. 1–12, 2014.

[102] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
nature, vol. 393, no. 6684, pp. 440–442, 1998.

[103] W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, “Natural connectivity of
complex networks,” Chinese physics letters, vol. 27, no. 7, p. 078 902, 2010.

[104] J. Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, “Spectral measure of structural ro-
bustness in complex networks,” IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 41, no. 6, pp. 1244–1252, 2011.

[105] Y. Xia, J. Fan, and D. Hill, “Cascading failure in watts–strogatz small-world net-
works,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 6,
pp. 1281–1285, 2010.

[106] Y. Yang, Z. Li, Y. Chen, X. Zhang, and S. Wang, “Improving the robustness of
complex networks with preserving community structure,” PloS one, vol. 10, no. 2,
e0116551, 2015.

180

[107] A Yazdani and P Jeffrey, “Robustness and vulnerability analysis of water distri-
bution networks using graph theoretic and complex network principles,” in Water
Distribution Systems Analysis 2010, 2010, pp. 933–945.

[108] A. Yazdani and P. Jeffrey, “Complex network analysis of water distribution sys-
tems,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 21, no. 1,
p. 016 111, 2011.

[109] A. Zeng and W. Liu, “Enhancing network robustness against malicious attacks,”
Physical Review E, vol. 85, no. 6, p. 066 130, 2012.

[110] L. Zhao, K. Park, and Y.-C. Lai, “Attack vulnerability of scale-free networks due
to cascading breakdown,” Physical review E, vol. 70, no. 3, p. 035 101, 2004.

[111] D. Zhao, L. Wang, S. Li, Z. Wang, L. Wang, and B. Gao, “Immunization of epi-
demics in multiplex networks,” PloS one, vol. 9, no. 11, e112018, 2014.

[112] H. A. Jung, “On a class of posets and the corresponding comparability graphs,”
Journal of Combinatorial Theory, Series B, vol. 24, no. 2, pp. 125–133, 1978.

[113] M. Cozzens, D. Moazzami, and S. Stueckle, “The tenacity of a graph,” 1995.

[114] C. Barefoot, R. Entringer, and H. Swart, “Integrity of trees and powers of cycles,”
Congr. Numer, vol. 58, pp. 103–114, 1987.

[115] B. Mohar, “Isoperimetric numbers of graphs,” Journal of combinatorial theory,
Series B, vol. 47, no. 3, pp. 274–291, 1989.

[116] A.-H. Esfahanian, “Connectivity algorithms,” in Topics in structural graph theory,
Cambridge University Press, 2013, pp. 268–281.

[117] D. W. Matula, “Determining edge connectivity in 0 (nm),” in 28th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1987), IEEE, 1987, pp. 249–251.

[118] H. Whitney, “Congruent graphs and the connectivity of graphs,” in Hassler Whitney
Collected Papers, Springer, 1992, pp. 61–79.

[119] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, p. 345,
Jun. 1962.

[120] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry,
pp. 35–41, 1977.

[121] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathemat-
ical sociology, vol. 25, no. 2, pp. 163–177, 2001.

181

[122] O. Green and D. A. Bader, “Faster clustering coefficient using vertex covers,” in
2013 International Conference on Social Computing, IEEE, 2013, pp. 321–330.

[123] S. K. Butler, “Eigenvalues and structures of graphs,” Ph.D. dissertation, UC San
Diego, 2008.

[124] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real
networks: An eigenvalue viewpoint,” in 22nd International Symposium on Reliable
Distributed Systems, 2003. Proceedings., IEEE, 2003, pp. 25–34.

[125] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic graphs,” in Pro-
ceedings of the 2015 SIAM International Conference on Data Mining, SIAM, 2015,
pp. 559–567.

[126] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in complex net-
works,” Physical Review E, vol. 71, no. 5, p. 056 103, 2005.

[127] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,”
Bulletin of the American Mathematical Society, vol. 43, no. 4, pp. 439–561, 2006.

[128] E. Estrada and J. A. Rodrı́guez-Velázquez, “Spectral measures of bipartivity in
complex networks,” Physical Review E, vol. 72, no. 4, p. 046 105, 2005.

[129] L. Wu, P.-Y. Chen, I. E.-H. Yen, F. Xu, Y. Xia, and C. Aggarwal, “Scalable spec-
tral clustering using random binning features,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018,
pp. 2506–2515.

[130] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical jour-
nal, vol. 23, no. 2, pp. 298–305, 1973.

[131] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users’ guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods. Siam,
1998, vol. 6.

[132] G. Weichenberg, V. W. Chan, and M. Médard, “High-reliability topological archi-
tectures for networks under stress,” IEEE Journal on Selected Areas in Communi-
cations, vol. 22, no. 9, pp. 1830–1845, 2004.

[133] F. Buekenhout and M. Parker, “The number of nets of the regular convex polytopes
in dimension ¡ 4,” Discrete mathematics, vol. 186, no. 1-3, pp. 69–94, 1998.

[134] S. Tsironis, M. Sozio, M. Vazirgiannis, and L. Poltechnique, “Accurate spectral
clustering for community detection in mapreduce,” in Advances in Neural Infor-
mation Processing Systems (NIPS) Workshops, Citeseer, 2013.

182

[135] A. Di Nardo, C. Giudicianni, R. Greco, M. Herrera, and G. F. Santonastaso, “Ap-
plications of graph spectral techniques to water distribution network management,”
Water, vol. 10, no. 1, p. 45, 2018.

[136] P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst.
Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

[137] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and algorithms,”
ACM computing surveys (CSUR), vol. 38, no. 1, 2–es, 2006.

[138] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” science,
vol. 286, no. 5439, pp. 509–512, 1999.

[139] P. Holme and B. J. Kim, “Growing scale-free networks with tunable clustering,”
Physical review E, vol. 65, no. 2, p. 026 107, 2002.

[140] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” Stanford InfoLab, Tech. Rep., 1999.

[141] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted networks:
Generalizing degree and shortest paths,” Social networks, vol. 32, no. 3, pp. 245–
251, 2010.

[142] L. Katz, “A new status index derived from sociometric analysis,” Psychometrika,
vol. 18, no. 1, pp. 39–43, 1953.

[143] J. Kang, M. Wang, N. Cao, Y. Xia, W. Fan, and H. Tong, “Aurora: Auditing pager-
ank on large graphs,” in 2018 IEEE International Conference on Big Data (Big
Data), IEEE, 2018, pp. 713–722.

[144] M. Wang, J. Kang, C. Nan, Y. Xia, W. Fan, and H. Tong, “Graph ranking auditing:
Problem definition and fast solutions,” IEEE Transactions on Knowledge and Data
Engineering, 2020.

[145] J. Kang, S. Freitas, H. Yu, Y. Xia, N. Cao, and H. Tong, “X-rank: Explainable rank-
ing in complex multi-layered networks,” in Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management, 2018, pp. 1959–
1962.

[146] T. Xie, Y. Ma, H. Tong, M. T. Thai, and R. Maciejewski, “Auditing the sensitivity
of graph-based ranking with visual analytics,” IEEE Transactions on Visualization
and Computer Graphics, 2020.

183

[147] Z. Chen, H. Tong, and L. Ying, “Realtime robustification of interdependent net-
works under cascading attacks,” in 2018 IEEE International Conference on Big
Data (Big Data), IEEE, 2018, pp. 1347–1356.

[148] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Adversarial attack
on graph structured data,” arXiv preprint arXiv:1806.02371, 2018.

[149] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural net-
works for graph data,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2847–2856.

[150] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and
function using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), Tech. Rep., 2008.

[151] A. Azizi, C. Montalvo, B. Espinoza, Y. Kang, and C. Castillo-Chavez, “Epidemics
on networks: Reducing disease transmission using health emergency declarations
and peer communication,” Infectious Disease Modelling, vol. 5, pp. 12–22, 2020.

[152] G. Rossetti, L. Milli, S. Rinzivillo, A. Sı̂rbu, D. Pedreschi, and F. Giannotti, “Ndlib:
A python library to model and analyze diffusion processes over complex networks,”
International Journal of Data Science and Analytics, vol. 5, no. 1, pp. 61–79, 2018.

[153] K. A. Klise, R. Murray, and T. Haxton, “An overview of the water network tool
for resilience (wntr).,” Sandia National Lab.(SNL-NM), Albuquerque, NM (United
States), Tech. Rep., 2018.

[154] M. Korkali, J. G. Veneman, B. F. Tivnan, J. P. Bagrow, and P. D. Hines, “Reduc-
ing cascading failure risk by increasing infrastructure network interdependence,”
Scientific reports, vol. 7, p. 44 499, 2017.

[155] S. Freitas, H. Tong, N. Cao, and Y. Xia, “Rapid analysis of network connectivity,”
in Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, 2017, pp. 2463–2466.

[156] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for
exploring and manipulating networks,” in Third international AAAI conference on
weblogs and social media, 2009.

[157] U. Brandes and C. Pich, “Centrality estimation in large networks,” International
Journal of Bifurcation and Chaos, vol. 17, no. 07, pp. 2303–2318, 2007.

[158] E. Hernadez, S. Hoagland, and L. Ormsbee, “Water distribution database for re-
search applications,” in World Environmental and Water Resources Congress 2016,
2016, pp. 465–474.

184

[159] W. O. Kermack and A. G. McKendrick, “A contribution to the mathematical theory
of epidemics,” Proceedings of the royal society of london. Series A, Containing
papers of a mathematical and physical character, vol. 115, no. 772, pp. 700–721,
1927.

[160] I. Hernandez-Fajardo and L. Dueñas-Osorio, “Probabilistic study of cascading fail-
ures in complex interdependent lifeline systems,” Reliability Engineering & System
Safety, vol. 111, pp. 260–272, 2013.

[161] M. N. Banu and S. M. Banu, “A comprehensive study of phishing attacks,” IJCSIT,
vol. 4, no. 6, pp. 783–786, 2013.

[162] R. Lefferts, Gartner names microsoft a leader in 2019 endpoint protection plat-
forms magic quadrant.

[163] Q. Liu, J. W. Stokes, R. Mead, T. Burrell, I. Hellen, J. Lambert, A. Marochko, and
W. Cui, “Latte: Large-scale lateral movement detection,” in MILCOM, IEEE, 2018,
pp. 1–6.

[164] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie, “Scan statistics for the online
detection of locally anomalous subgraphs,” Technometrics, 2013.

[165] M. A. Noureddine, A. Fawaz, W. H. Sanders, and T. Başar, “A game-theoretic
approach to respond to attacker lateral movement,” in GameSec, Springer, 2016.

[166] A. Fawaz, A. Bohara, C. Cheh, and W. H. Sanders, “Lateral movement detection
using distributed data fusion,” in SRDS, IEEE, 2016, pp. 21–30.

[167] A. D. Kent, L. M. Liebrock, and J. C. Neil, “Authentication graphs: Analyzing user
behavior within an enterprise network,” Computers & Security, vol. 48, 2015.

[168] O. Sheyner and J. Wing, “Tools for generating and analyzing attack graphs,” in
International Symposium on Formal Methods for Components and Objects.

[169] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network vul-
nerability analysis,” in CCS, ACM, 2002, pp. 217–224.

[170] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,” in Pro-
ceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15.

[171] “The ntlm authentication protocol and security support provider,” Tech. Rep., 2006.

[172] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for computer
networks,” IEEE Communications magazine, vol. 32, no. 9, pp. 33–38, 1994.

185

[173] M Soria-Machado, D Abolins, C Boldea, and K Socha, “Detecting lateral move-
ments in windows infrastructure,” CERT-EU Security Whitepaper 17–002,

[174] J. Mulder, Mimikatz overview, defenses and detection, 2016.

[175] J. Sexton, C. Storlie, and J. Neil, “Attack chain detection,” Statistical Analysis and
Data Mining: The ASA Data Science Journal, vol. 8, no. 5-6, pp. 353–363, 2015.

[176] V. L. Le, I. Welch, X. Gao, and P. Komisarczuk, “Anatomy of drive-by download
attack,” in ACSW-AISC, Australian Computer Society, Inc., 2013, pp. 49–58.

[177] M. E. Newman, “Mathematics of networks,” The new Palgrave dictionary of eco-
nomics, pp. 1–8, 2016.

[178] A. D. Kent, “Cybersecurity Data Sources for Dynamic Network Research,” in Dy-
namic Networks in Cybersecurity, Imperial College Press, Jun. 2015.

[179] C. Cai and Y. Wang, “A simple yet effective baseline for non-attributed graph clas-
sification,” ICLR, 2019.

[180] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of graph neural
networks for graph classification,” arXiv preprint arXiv:1912.09893, 2019.

[181] T. Schulz and P. Welke, “On the necessity of graph kernel baselines,” in ECML-
PKDD, GEM workshop, 2019.

[182] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls of graph neu-
ral network evaluation,” arXiv preprint arXiv:1811.05868, 2018.

[183] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.
Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21,
2005.

[184] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, ACM, 2015, pp. 1365–1374.

[185] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exd-
b/mnist/, 1998.

[186] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein, and
L. Cavallaro, “Euphony: Harmonious unification of cacophonous anti-virus vendor
labels for android malware,” in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), IEEE, 2017, pp. 425–435.

186

[187] V. Total, “Virustotal-free online virus, malware and url scanner,” Online: https://www.
virustotal. com/en, 2012.

[188] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “On the lack of
consensus in anti-virus decisions: Metrics and insights on building ground truths
of android malware,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2016, pp. 142–162.

[189] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani,
A. D. Joseph, and J. D. Tygar, “Better malware ground truth: Techniques for weight-
ing anti-virus vendor labels,” in Proceedings of the 8th ACM Workshop on Artificial
Intelligence and Security, 2015, pp. 45–56.

[190] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[191] M. Peng, Q. Zhang, X. Xing, T. Gui, X. Huang, Y.-G. Jiang, K. Ding, and Z.
Chen, “Trainable undersampling for class-imbalance learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 4707–4714.

[192] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets
with label-distribution-aware margin loss,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 1565–1576.

[193] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on
effective number of samples,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9268–9277.

[194] R. Duggal, S. Freitas, S. Dhamnani, D. Horng, J. Sun, et al., “Elf: An early-exiting
framework for long-tailed classification,” arXiv:2006.11979, 2020.

[195] B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande, “Mas-
sively multitask networks for drug discovery,” arXiv preprint arXiv:1502.02072,
2015.

[196] S. G. Rohrer and K. Baumann, “Maximum unbiased validation (muv) data sets for
virtual screening based on pubchem bioactivity data,” Journal of chemical infor-
mation and modeling, vol. 49, no. 2, pp. 169–184, 2009.

[197] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph patterns by leap
search,” in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, 2008, pp. 433–444.

187

[198] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K.
Leswing, and V. Pande, “Moleculenet: A benchmark for molecular machine learn-
ing,” Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[199] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor spaces for chem-
ical compound retrieval and classification,” Knowledge and Information Systems,
vol. 14, no. 3, pp. 347–375, 2008.

[200] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma, “Statistical eval-
uation of the predictive toxicology challenge 2000–2001,” Bioinformatics, vol. 19,
no. 10, pp. 1183–1193, 2003.

[201] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C.
Hansch, “Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity,”
Journal of medicinal chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[202] K. Riesen and H. Bunke, “Iam graph database repository for graph based pattern
recognition and machine learning,” in Joint IAPR International Workshops on Sta-
tistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pat-
tern Recognition (SSPR), Springer, 2008, pp. 287–297.

[203] M. Neumann, P. Moreno, L. Antanas, R. Garnett, and K. Kersting, “Graph kernels
for object category prediction in task-dependent robot grasping,” in Online Pro-
ceedings of the Eleventh Workshop on Mining and Learning with Graphs, 2013,
pp. 0–6.

[204] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-enzymes
without alignments,” Journal of molecular biology, vol. 330, no. 4, pp. 771–783,
2003.

[205] B. Rozemberczki, O. Kiss, and R. Sarkar, “An api oriented open-source python
framework for unsupervised learning on graphs,” CIKM, 2020.

[206] “Aids antiviral screen,” URL http://dtp. nci. nih. gov/docs/aids/aids-data. html,
2004.

[207] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan,
S. Dracheva, B. A. Shoemaker, et al., “Pubchem’s bioassay database,” Nucleic
acids research, vol. 40, no. D1, pp. D400–D412, 2012.

[208] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of cur-
rent android malware,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2017, pp. 252–276.

188

[209] B. Popper, Google announces over 2 billion monthly active devices on android,
May 2017.

[210] L. Li, J. Gao, M. Hurier, P. Kong, T. F. Bissyandé, A. Bartel, J. Klein, and Y. L.
Traon, “Androzoo++: Collecting millions of android apps and their metadata for
the research community,” arXiv preprint arXiv:1709.05281, 2017.

[211] “Nokia threat intelligence report,” Network Security, 2018.

[212] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting millions
of android apps for the research community,” in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), IEEE, 2016, pp. 468–471.

[213] A. Desnos and G. Gueguen, “Android: From reversing to decompilation,” Proc. of
Black Hat Abu Dhabi, pp. 77–101, 2011.

[214] R. Duggal, S. Freitas, C. Xiao, D. H. Chau, and J. Sun, “Rest: Robust and effi-
cient neural networks for sleep monitoring in the wild,” in Proceedings of The Web
Conference 2020, 2020, pp. 1704–1714.

[215] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geo-
metric,” arXiv preprint arXiv:1903.02428, 2019.

[216] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” in International Conference on Learning Representations (ICLR),
2017.

[217] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural net-
works?” In International Conference on Learning Representations, 2019.

[218] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a
feather, from statistical descriptors to parametric models,” in Proceedings of the
29th ACM International Conference on Information and Knowledge Management
(CIKM ’20), ACM, 2020.

[219] A. Tsitsulin, M. Munkhoeva, and B. Perozzi, “Just slaq when you approximate:
Accurate spectral distances for web-scale graphs,” in WWW ’20, Taipei, Taiwan,
2020.

[220] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[221] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger, “Simpli-
fying graph convolutional networks,” arXiv preprint arXiv:1902.07153, 2019.

189

[222] P.-Y. Chen, L. Wu, S. Liu, and I. Rajapakse, “Fast incremental von neumann graph
entropy computation: Theory, algorithm, and applications,” in International Con-
ference on Machine Learning, 2019, pp. 1091–1101.

[223] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “Netlsd: Hearing
the shape of a graph,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2018, pp. 2347–2356.

[224] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,
“Graph kernels,” The Journal of Machine Learning Research, vol. 11, pp. 1201–
1242, 2010.

[225] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in Fifth
IEEE international conference on data mining (ICDM’05), IEEE, 2005, 8–pp.

[226] F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya, “Global graph kernels
using geometric embeddings,” in Proceedings of the 31st International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, 2014.

[227] F. Gao, G. Wolf, and M. Hirn, “Geometric scattering for graph data analysis,” in
International Conference on Machine Learning, 2019, pp. 2122–2131.

[228] N. de Lara and E. Pineau, “A simple baseline algorithm for graph classification,”
arXiv preprint arXiv:1810.09155, 2018.

[229] A. Galland and M. Lelarge, “Invariant embedding for graph classification,” in ICML
2019 Workshop on Learning and Reasoning with Graph-Structured Representa-
tions, 2019.

[230] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast feature
learning on graphs,” in Advances in Neural Information Processing Systems, 2017,
pp. 88–98.

[231] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal,
“Graph2vec: Learning distributed representations of graphs,” arXiv preprint arXiv:1707.05005,
2017.

[232] H. Chen and H. Koga, “Gl2vec: Graph embedding enriched by line graphs with
edge features,” in International Conference on Neural Information Processing,
Springer, 2019, pp. 3–14.

[233] D. Noever and S. E. M. Noever, “Virus-mnist: A benchmark malware dataset,”
arXiv preprint arXiv:2103.00602, 2021.

190

[234] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A comparative assessment
of malware classification using binary texture analysis and dynamic analysis,” in
Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, 2011,
pp. 21–30.

[235] L. Chen, R. Sahita, J. Parikh, and M. Marino, “Stamina: Scalable deep learning
approach for malware classification,” Intel White Paper,

[236] J. Gennissen, L. Cavallaro, V. Moonsamy, and L. Batina, Gamut: Sifting through
images to detect android malware, 2017.

[237] K. Kancherla and S. Mukkamala, “Image visualization based malware detection,”
in 2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS),
IEEE, 2013, pp. 40–44.

[238] S. Choi, S. Jang, Y. Kim, and J. Kim, “Malware detection using malware image
and deep learning,” in 2017 International Conference on Information and Commu-
nication Technology Convergence (ICTC), IEEE, 2017, pp. 1193–1195.

[239] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan, “Malware visualization for fine-grained
classification,” IEEE Access, vol. 6, pp. 14 510–14 523, 2018.

[240] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis using visualized
images and entropy graphs,” International Journal of Information Security, vol. 14,
no. 1, pp. 1–14, 2015.

[241] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, and K. Sakurai, “Lightweight
classification of iot malware based on image recognition,” in 2018 IEEE 42Nd an-
nual computer software and applications conference (COMPSAC), IEEE, vol. 2,
2018, pp. 664–669.

[242] T. C. of Economic Advisers, “The cost of malicious cyber activity to the u.s. econ-
omy,” 2018.

[243] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images: Vi-
sualization and automatic classification,” in Proceedings of the 8th international
symposium on visualization for cyber security, 2011, pp. 1–7.

[244] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-Alemany,
B. Sangster, and M. Supan, “A visual study of primitive binary fragment types,”
Black Hat USA, 2010.

[245] Y. Fang, Y. Gao, F. Jing, and L. Zhang, “Android malware familial classification
based on dex file section features,” IEEE Access, vol. 8, pp. 10 614–10 627, 2020.

191

[246] S. Lu, L. Ying, W. Lin, Y. Wang, M. Nie, K. Shen, L. Liu, and H. Duan, “New
era of deeplearning-based malware intrusion detection: The malware detection and
prediction based on deep learning,” arXiv preprint arXiv:1907.08356, 2019.

[247] J.-S. Luo and D. C.-T. Lo, “Binary malware image classification using machine
learning with local binary pattern,” in 2017 IEEE International Conference on Big
Data (Big Data), IEEE, 2017, pp. 4664–4667.

[248] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas,
“Malware detection by eating a whole exe,” in Workshops at the Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[249] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer, Y.
Safaei, E. Trickel, Z. Zhao, A. Doupé, et al., “Deep android malware detection,” in
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, ACM, 2017, pp. 301–308.

[250] F. Mercaldo and A. Santone, “Deep learning for image-based mobile malware de-
tection,” Journal of Computer Virology and Hacking Techniques, 2020.

[251] R. Burks, K. A. Islam, Y. Lu, and J. Li, “Data augmentation with generative models
for improved malware detection: A comparative study,” in 2019 IEEE 10th Annual
Ubiquitous Computing, Electronics & Mobile Communication Conference (UEM-
CON), IEEE, 2019, pp. 0660–0665.

[252] A. Azab and M. Khasawneh, “Msic: Malware spectrogram image classification,”
IEEE Access, vol. 8, pp. 102 007–102 021, 2020.

[253] S. Yue, “Imbalanced malware images classification: A cnn based approach,” arXiv:1708.08042,
2017.

[254] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, “Data augmentation based
malware detection using convolutional neural networks,” arXiv preprint arXiv:2010.01862,
2020.

[255] Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, “End-to-end malware detection
for android iot devices using deep learning,” Ad Hoc Networks, 2020.

[256] L. Chen, “Deep transfer learning for static malware classification,” arXiv preprint
arXiv:1812.07606, 2018.

[257] A. Jain, H. Gonzalez, and N. Stakhanova, “Enriching reverse engineering through
visual exploration of android binaries,” in Proceedings of the 5th Program Protec-
tion and Reverse Engineering Workshop, 2015, pp. 1–9.

192

[258] A. Kumar, K. P. Sagar, K. Kuppusamy, and G Aghila, “Machine learning based
malware classification for android applications using multimodal image represen-
tations,” in 2016 10th international conference on intelligent systems and control
(ISCO), IEEE, 2016, pp. 1–6.

[259] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Microsoft mal-
ware classification challenge,” arXiv preprint arXiv:1802.10135, 2018.

[260] A. Nappa, M. Z. Rafique, and J. Caballero, “Driving in the cloud: An analysis of
drive-by download operations and abuse reporting,” in International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer,
2013, pp. 1–20.

[261] S. Freitas, Y. Dong, J. Neil, and D. H. Chau, “A large-scale database for graph
representation learning,” arXiv preprint arXiv:2011.07682, 2020.

[262] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F. Iqbal, “Mal-
ware classification with deep convolutional neural networks,” in 2018 9th IFIP
International Conference on New Technologies, Mobility and Security (NTMS),
IEEE, 2018, pp. 1–5.

[263] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen, “Detection of malicious
code variants based on deep learning,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 7, pp. 3187–3196, 2018.

[264] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos, and P. de Geus,
“Malicious software classification using vgg16 deep neural network’s bottleneck
features,” in Information Technology-New Generations, Springer, 2018, pp. 51–59.

[265] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, “Malware analy-
sis of imaged binary samples by convolutional neural network with attention mech-
anism,” in Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, 2018, pp. 127–134.

[266] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[267] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2017, pp. 4700–4708.

[268] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

193

[269] N. Bhodia, P. Prajapati, F. Di Troia, and M. Stamp, “Transfer learning for image-
based malware classification,” arXiv preprint arXiv:1903.11551, 2019.

[270] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus, “Malicious soft-
ware classification using transfer learning of resnet-50 deep neural network,” in
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), IEEE, 2017, pp. 1011–1014.

[271] W. W. Lo, X. Yang, and Y. Wang, “An xception convolutional neural network for
malware classification with transfer learning,” in 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), IEEE, 2019,
pp. 1–5.

[272] X. Gao, C. Hu, C. Shan, B. Liu, Z. Niu, and H. Xie, “Malware classification for the
cloud via semi-supervised transfer learning,” Journal of Information Security and
Applications, vol. 55, p. 102 661, 2020.

[273] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense ob-
ject detection,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 2980–2988.

[274] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, “Neural malware
analysis with attention mechanism,” Computers & Security, vol. 87, p. 101 592,
2019.

[275] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” in Proceedings of the IEEE international conference on computer vision,
2017, pp. 618–626.

[276] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by multi-context
deep learning,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 1265–1274.

[277] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations, 2014.

[278] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

[279] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reli-
able attacks against black-box machine learning models,” in ICLR, 2018.

[280] S.-T. Chen, C. Cornelius, J. Martin, and D. H. Chau, “Shapeshifter: Robust physical
adversarial attack on faster r-cnn object detector,” in PKDD, 2018.

194

[281] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[282] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-
works,” arXiv preprint arXiv:1710.08864, 2017.

[283] A. Cabrera, F. Hohman, J. Lin, and D. H. Chau, “Interactive classification for deep
learning interpretation,” Demo, CVPR, 2018.

[284] F. Hohman, N. Hodas, and D. H. Chau, “Shapeshop: Towards understanding deep
learning representations via interactive experimentation,” in CHI, 2017.

[285] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adver-
sarial examples are not bugs, they are features,” arXiv preprint arXiv:1905.02175,
2019.

[286] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may
be at odds with accuracy,” arXiv preprint arXiv:1805.12152, vol. 1050, p. 11, 2018.

[287] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille, “Detect what
you can: Detecting and representing objects using holistic models and body parts,”
in CVPR, 2014.

[288] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The
PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results.

[289] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in CVPR, 2009.

[290] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” in ECCV, 2014.

[291] M. Alzantot, Y. Sharma, S. Chakraborty, and M. B. Srivastava, “Genattack: Practi-
cal black-box attacks with gradient-free optimization,” arXiv preprint, 2018.

[292] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with
limited queries and information,” in ICML, 2018.

[293] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Prac-
tical black-box attacks against machine learning,” in CCS, 2017.

[294] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learn-
ing models resistant to adversarial attacks,” in ICLR, 2018.

195

[295] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial
attacks with momentum,” in CVPR, 2018, pp. 9185–9193.

[296] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in International Conference on Learning Representations, 2017.

[297] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” in ICLR, 2018.

[298] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense
to adversarial perturbations against deep neural networks,” in IEEE Symposium on
Security and Privacy, IEEE, 2016, pp. 582–597.

[299] N. Carlini and D. A. Wagner, “Defensive distillation is not robust to adversarial
examples,” arXiv preprint arXiv:1607.04311, 2016.

[300] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, S. Li, L. Chen, M. E. Kounavis,
and D. H. Chau, “Shield: Fast, practical defense and vaccination for deep learning
using jpeg compression,” in KDD, 2018.

[301] A. N. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as a defense
against evasion attacks on machine learning classifiers,” arXiv preprint arXiv:1704.02654,
2017.

[302] R. Shin and D. Song, “Jpeg-resistant adversarial images,” NIPS 2017 Workshop on
Machine Learning and Computer Security, 2017.

[303] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples,” in Proceedings of the
35th International Conference on Machine Learning, 2018.

[304] T. Gebhart and P. Schrater, “Adversary detection in neural networks via persistent
homology,” arXiv preprint arXiv:1711.10056, 2017.

[305] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. Wang, “Detecting adversarial exam-
ples in deep networks with adaptive noise reduction,” arXiv preprint, 2017.

[306] J. Wang, J. Sun, P. Zhang, and X. Wang, “Detecting adversarial samples for deep
neural networks through mutation testing,” arXiv preprint, 2018.

[307] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in
deep neural networks,” in NDSS, 2018.

[308] F. Carrara, F. Falchi, R. Caldelli, G. Amato, R. Fumarola, and R. Becarelli, “De-
tecting adversarial example attacks to deep neural networks,” ser. CBMI, 2017.

196

[309] X. Li and F. Li, “Adversarial examples detection in deep networks with convolu-
tional filter statistics.,” in ICCV, 2017, pp. 5775–5783.

[310] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial exam-
ples,” in CSS, ACM, 2017, pp. 135–147.

[311] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV, 2017.

[312] G. W. Ding, L. Wang, and X. Jin, “AdverTorch v0.1: An adversarial robustness
toolbox based on pytorch,” arXiv preprint arXiv:1902.07623, 2019.

[313] W. Abdulla, Mask r-cnn for object detection and instance segmentation on keras
and tensorflow, https://github.com/matterport/Mask_RCNN, 2017.

[314] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,” 2018.

[315] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in CVPR, 2016, pp. 770–778.

[316] A. Sors, S. Bonnet, S. Mirek, L. Vercueil, and J.-F. Payen, “A convolutional neural
network for sleep stage scoring from raw single-channel eeg,” Biomedical Signal
Processing and Control, vol. 42, pp. 107–114, 2018.

[317] S. Biswal, J. Kulas, H. Sun, B. Goparaju, M. B. Westover, M. T. Bianchi, and
J. Sun, “SLEEPNET: automated sleep staging system via deep learning,” CoRR,
vol. abs/1707.08262, 2017. arXiv: 1707.08262.

[318] A. Supratak, H. Dong, C. Wu, and Y. Guo, “Deepsleepnet: A model for automatic
sleep stage scoring based on raw single-channel eeg,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 1998–2008, 2017.

[319] A. Sterr, J. K. Ebajemito, K. B. Mikkelsen, M. A. Bonmati-Carrion, N. Santhi, C.
Della Monica, L. Grainger, G. Atzori, V. Revell, S. Debener, et al., “Sleep eeg de-
rived from behind-the-ear electrodes (ceegrid) compared to standard polysomnog-
raphy: A proof of concept study,” Frontiers in human neuroscience, vol. 12, p. 452,
2018.

[320] A. Henriksen, M. H. Mikalsen, A. Z. Woldaregay, M. Muzny, G. Hartvigsen, L. A.
Hopstock, and S. Grimsgaard, “Using fitness trackers and smartwatches to measure
physical activity in research: Analysis of consumer wrist-worn wearables,” Journal
of medical Internet research, vol. 20, no. 3, e110, 2018.

[321] Z Beattie, A Pantelopoulos, A Ghoreyshi, Y Oyang, A Statan, and C Heneghan,
“0068 ESTIMATION OF SLEEP STAGES USING CARDIAC AND ACCELEROM-

197

https://github.com/matterport/Mask_RCNN
https://arxiv.org/abs/1707.08262

ETER DATA FROM a WRIST-WORN DEVICE,” Sleep, vol. 40, no. suppl 1, A26–
A26, Apr. 2017.

[322] K.-M. Chang and S.-H. Liu, “Gaussian noise filtering from ecg by wiener filter and
ensemble empirical mode decomposition,” Journal of Signal Processing Systems,
vol. 64, no. 2, pp. 249–264, 2011.

[323] M. Blanco-Velasco, B. Weng, and K. E. Barner, “Ecg signal denoising and base-
line wander correction based on the empirical mode decomposition,” Computers in
biology and medicine, vol. 38, no. 1, pp. 1–13, 2008.

[324] Y. Chen, M. Akutagawa, T. Emoto, and Y. Kinouchi, “The removal of emg in eeg
by neural networks,” Physiological measurement, vol. 31, no. 12, p. 1567, 2010.

[325] V. Bhateja, S. Urooj, R. Verma, and R. Mehrotra, “A novel approach for suppres-
sion of powerline interference and impulse noise in ecg signals,” in IMPACT-2013,
IEEE, 2013, pp. 103–107.

[326] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort, “A deep
learning architecture for temporal sleep stage classification using multivariate and
multimodal time series,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 4, pp. 758–769, 2018.

[327] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Joint classifica-
tion and prediction cnn framework for automatic sleep stage classification,” IEEE
Transactions on Biomedical Engineering, vol. 66, no. 5, pp. 1285–1296, May 2019.

[328] F. Andreotti, H. Phan, N. Cooray, C. Lo, M. T. M. Hu, and M. De Vos, “Multi-
channel sleep stage classification and transfer learning using convolutional neural
networks,” in 2018 40th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Jul. 2018, pp. 171–174.

[329] M. Zhao, S. Yue, D. Katabi, T. S. Jaakkola, and M. T. Bianchi, “Learning sleep
stages from radio signals: A conditional adversarial architecture,” Proceedings of
Machine Learning Research, vol. 70, D. Precup and Y. W. Teh, Eds., pp. 4100–
4109, 2017.

[330] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[331] N. Ford, J. Gilmer, N. Carlini, and D. Cubuk, “Adversarial examples are a natu-
ral consequence of test error in noise,” CoRR, vol. abs/1901.10513, 2019. arXiv:
1901.10513.

198

https://arxiv.org/abs/1901.10513

[332] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to com-
mon corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.

[333] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network,” in Advances in neural information processing systems,
2015, pp. 1135–1143.

[334] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks,” in European Conference on
Computer Vision, Springer, 2016, pp. 525–542.

[335] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network acoustic models
with singular value decomposition.,” in Interspeech, 2013, pp. 2365–2369.

[336] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[337] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[338] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” in Advances in neural information processing systems, 2016,
pp. 2074–2082.

[339] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convo-
lutional networks through network slimming,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017, pp. 2736–2744.

[340] R. Duggal, C. Xiao, R. Vuduc, and J. Sun, Cup: Cluster pruning for compressing
deep neural networks, 2019. eprint: arXiv:1911.08630.

[341] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu,
“Discrimination-aware channel pruning for deep neural networks,” in Advances in
Neural Information Processing Systems, 2018, pp. 875–886.

[342] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse dnns with improved adversarial
robustness,” in Advances in neural information processing systems, 2018, pp. 242–
251.

[343] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets robust-
ness,” arXiv preprint arXiv:1904.08444, 2019.

[344] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval net-
works: Improving robustness to adversarial examples,” in Proceedings of the 34th

199

arXiv:1911.08630

International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 854–
863.

[345] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving the gener-
alizability of deep learning,” arXiv preprint arXiv:1705.10941, 2017.

[346] F. Farnia, J. M. Zhang, and D. Tse, “Generalizable adversarial training via spectral
normalization,” arXiv preprint arXiv:1811.07457, 2018.

[347] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2554–2564.

[348] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “Physiobank,
physiotoolkit, and physionet: Components of a new research resource for complex
physiologic signals,” Circulation, vol. 101, no. 23, e215–e220, 2000.

[349] S. F. Quan, B. V. Howard, C. Iber, J. P. Kiley, F. J. Nieto, G. T. O’Connor, D. M.
Rapoport, S. Redline, J. Robbins, J. M. Samet, et al., “The sleep heart health study:
Design, rationale, and methods,” Sleep, vol. 20, no. 12, pp. 1077–1085, 1997.

[350] R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, C. L. Marcus, B. V. Vaughn,
et al., “The aasm manual for the scoring of sleep and associated events,” Rules,
Terminology and Technical Specifications, Darien, Illinois, American Academy of
Sleep Medicine, vol. 176, 2012.

[351] S Blanco, S Kochen, O. Rosso, and P Salgado, “Applying time-frequency analy-
sis to seizure eeg activity,” IEEE Engineering in medicine and biology magazine,
vol. 16, no. 1, pp. 64–71, 1997.

200

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Overview
	Part I: Robust Tools
	Part II: Algorithms
	Part III: Databases
	Part IV: Robust Models

	Thesis Statement
	Research Contributions
	Impact

	I Robust Tools
	Graph Vulnerability and Robustness: A Survey
	Introduction
	Contributions
	Survey Methodology & Summarization Process
	Related Surveys
	Survey Organization.

	Robustness Measures
	Measures Based on Graph Connectivity
	Measures Based on Adjacency Matrix Spectrum
	Measures Based on Laplacian Matrix Spectrum
	Comparing Robustness Measures
	Selecting a Robustness Measure

	Failures and Targeted Attacks
	Graph Models
	Isolated & Cascading Failures
	Targeted Attacks
	Comparison to Other Targeted Attacks

	Network Defense
	Measure Independent Heuristics
	Optimization Based Techniques
	Selecting a Defense Method

	Research Directions & Open Problems
	Guidelines for Selecting & Developing Measures
	Furthering Interpretability
	Studying Robustness in New Domains
	Bridging Graph Robustness & Adversarial ML

	Conclusion

	Evaluating Graph Vulnerability and Robustness using TIGER
	Introduction
	Contributions

	TIGER Robustness Measures
	Example Measures
	Measure Implementation & Evaluation
	Running Robustness Measures in TIGER

	TIGER Attacks
	Attack Strategies
	Comparing Strategies
	Running Network Attacks in TIGER

	TIGER Defenses
	Defense Strategies
	Comparing Strategies
	Running Network Defenses in TIGER

	TIGER Simulation Tools
	Cascading Failures
	Running Cascading Failures in TIGER
	Dissemination of Network Entities
	Running Entity Dissemination in TIGER

	Conclusion

	II Robust Algorithms
	D: Dynamic Defense and Modeling of Adversarial Movement in Networks
	Introduction
	Background and Our Differences
	Detecting Lateral Attacks
	Graph Mining & Network Security

	Authentication Graph
	Building Graph Structure
	Integrating Domain Knowledge

	Formulating the Research Problems
	D: Lateral Attack Modeling
	Lateral Attack Overview
	Lateral Attack Strategies
	Lateral Attack Algorithm
	Analysis of Lateral Attack Algorithm

	D: Lateral Attack Vulnerability
	D: Lateral Attack Defense
	Defense Strategies
	Analysis of Defense Strategies

	Experiments
	Experimental Setup
	Network Vulnerability Analysis
	Defense Strategy Analysis

	Conclusion

	III Robust Databases
	A Large-Scale Database for Graph Representation Learning
	Introduction
	Properties of MalNet
	Graph Representation Learning Databases: Advancing the State-of-the-Art

	Constructing MalNet
	Collecting Candidate Graphs
	Processing the Graphs
	MalNet-Tiny
	Online Exploration of the Data

	MalNet for New Research & Discoveries
	Graph Representation Techniques
	Enabling New Discoveries
	Enabling New Research Directions

	Conclusion

	A Large-Scale Image Database of Malicious Software
	Introduction
	Properties of MalNet-Image
	MalNet-Image: Advancing the State-of-the-Art
	Constructing MalNet-Image
	Interactive Visual Explorer for MalNet-Image

	MalNet-Image Applications
	Application 1: Benchmarking Techniques
	Application 2: Malware Detection
	Application 3: Malware Classification
	Enabling New Research Directions

	Conclusion

	IV Robust Models
	UnMask: Adversarial Detection and Defense Through Robust Feature Alignment
	Introduction
	Contributions

	Background and Related Work
	Adversarial Attacks
	Adversarial Defense & Detection

	UnMask: Detection and Defense Framework
	Aligning Robust Features with Human Intuition
	Robust Features For Detection and Defense

	Evaluation
	Experiment Setup
	Evaluating UnMask Defense and Detection

	Conclusion

	REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild
	Introduction
	Contributions

	Related Work
	Sleep-Stage Prediction
	Noise & Adversarial Robustness
	Model Compression

	Rest: Noise-Robust & Efficient Models
	Overview
	Adversarial Training
	Spectral Regularizer
	Sparsity Regularizer & Rest Loss Function

	Experiments
	Datasets
	Model Architecture and Configurations
	Evaluation Metrics
	Hyperparameter Selection
	Noise Robustness
	Model Efficiency

	Conclusion

	V Conclusions
	Conclusion and Future Directions
	Research Contributions
	Impact
	Future Directions
	Advancing Vision Based Cybersecurity Research
	Advancing Graph Representation Learning Research
	Robust Tools and Algorithms

	References

