Developing Robust Models, Algorithms, Databases and Tools with Applications to Cybersecurity and Healthcare

ML PhD Dissertation Defense

Scott Freitas ML PhD Candidate

Diyi Yang Srijan Kumar B. Aditya Hanghang Prakash Tong

g Polo Chau

Cybersecurity	
Autonomous Vehicles	
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	
Search results	
News recommendations	
Social media newsfeeds	
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity	Catch bad guys
Autonomous Vehicles	Less accidents
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	
Search results	
News recommendations	
Social media newsfeeds	
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity	Catch bad guys
Autonomous Vehicles	Less accidents
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	Prevent outages
Search results	
News recommendations	
Social media newsfeeds	
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity	Catch bad guys
Autonomous Vehicles	Less accidents
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	Prevent outages
Search results	
News recommendations	
Social media newsfeeds	Connect people
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity	-> Catch bad guys
Autonomous Vehicles	→ Less accidents
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	Prevent outages
Search results	
News recommendations	
Social media newsfeeds	Connect people
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	> Life saving
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity	Catch bad guys
Autonomous Vehicles	Less accidents
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	Prevent outages
Search results	
News recommendations	
Social media newsfeeds	Connect people
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	Life saving
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	> Send right message

Cybersecurity ———		Catch bad guys
Autonomous Vehicles ———		→ Less accidents
Face unlock		Better privacy
Traffic & commute forecast		→ On-time
Email spam filters ——		→ Filter dangerous emails
Infrastructure monitori		→ Prevent outages
Search results	Machine learning	\longrightarrow Improved information
News recommendatic	wathing rearining	Better stories
Social media newsfeec		> Connect people
Mobile computational	is all around us	Create memories
Voice assistants ——		→ Help non-native users
Voice dictation ——		Record messages
Health informatics ————		−−−−−→ Life saving
Personalized music & radio ——		→ Improve mood
Entertainment recommendations		→ Save time
Spelling & text prediction		Send right message

It's disturbingly easy to trick Al into doing something deadly Vex

How "adversarial attacks" can mess with self-driving cars, medicine, and the military.

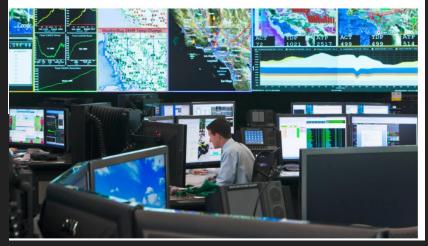
By Sigal Samuel | Apr 8, 2019, 9:10am EDT

UHS Ransomware Attack Cost \$67M in Lost Revenue, Recovery Efforts

The ransomware attack that struck all 400 UHS care sites and caused three weeks of EHR downtime in September, cost the health system \$67 million in recovery costs and lost revenue.

Security News This Week: An Unprecedented Cyberattack Hit US Power Utilities **MIBED**

Exposed Facebook phone numbers, an XKCD breach, and more of the week's top security news



Why Robust Machine Learning?

Detect and prevent attacks on

- critical infrastructure
- self driving cars
- enterprise networks

Improve decision making

- robust to noise
- identify weak points
- quantify vulnerability

Microsoft ATP

IBM Research

amazon

10

Machine learning is transforming the public and private sector. How do we protect it?

amazon

Weapons Division

11

Why do we need robust ML?

Cybersecurity	> Backdoors
Autonomous Vehicles	afe driving
Face unlock	
Traffic & commute forecast	
Email spam filters	
Infrastructure monitoring	Prevent outages
Search results	
News recommendations	
Social media newsfeeds	> Pigeonhole
Mobile computational photography	
Voice assistants	
Voice dictation	
Health informatics	Save lives
Personalized music & radio	
Entertainment recommendations	
Spelling & text prediction	

Cybersecurity ——		Backdoors
Autonomous Vehicles		→ Safe driving
Face unlock		Annoying
Traffic & commute fored	ast	−−−−→ Late
Email spam filters ——		 Missed important email
Infrastructure monitori		→ Prevent outages
Search results	Robust machine learning	 Spread misinformation
News recommendatic	Nobust machine rearring	
Social media newsfeec	muntanta una	Pigeonhole
Mobile computational	protects us	Miss memories
Voice assistants		→ Alienate users
Voice dictation ———		→ Wrong messages
Health informatics —		> Save lives
Personalized music & ra	dio	Ruin mood
Entertainment recomm	endations —————————————————————	→ Waste time
Spelling & text prediction	on ————————————————————————————————————	

Dissertation Research Mission

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: **Tools**

Part II: Algorithms

Part III: Databases

Part IV: Models **Robustness Survey** Summarize robustness literature TKDE 2021 (under review) **TIGER** Vulnerability and robustness toolbox CIKM 2021

D²M Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph databaseNeurIPS 2021MalNet-ImageLargest cybersecurity image databaseSubmitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 **REST** Identify robust signals in health data Web Conference 2020 **Dissertation Research Mission**

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: Tools

Part II: Algorithms

Part III: Databases

Part IV: Models **Robustness Survey** Summarize robustness literature TKDE 2021 (under review) **TIGER** Vulnerability and robustness toolbox CIKM 2021

D²M Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph database NeurIPS 2021MalNet-ImageLargest cybersecurity image database Submitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 REST Identify robust signals in health data Web Conference 2020

Part I: Why do we Need Robust Tools?

To democratize knowledge, and equip users to develop robust ML systems

- Robustness knowledge is currently scattered across disparate fields
- Key data and libraries are in the possession of a few industry labs

Robustness Survey

Graph Vulnerability and Robustness: A Survey

TKDE 2021 (under review)

Scott Freitas Georgia Tech

Diyi Yang Georgia Tech

Srijan Kumar Georgia Tech

Hanghang Tong UIUC

Polo Chau Georgia Tech

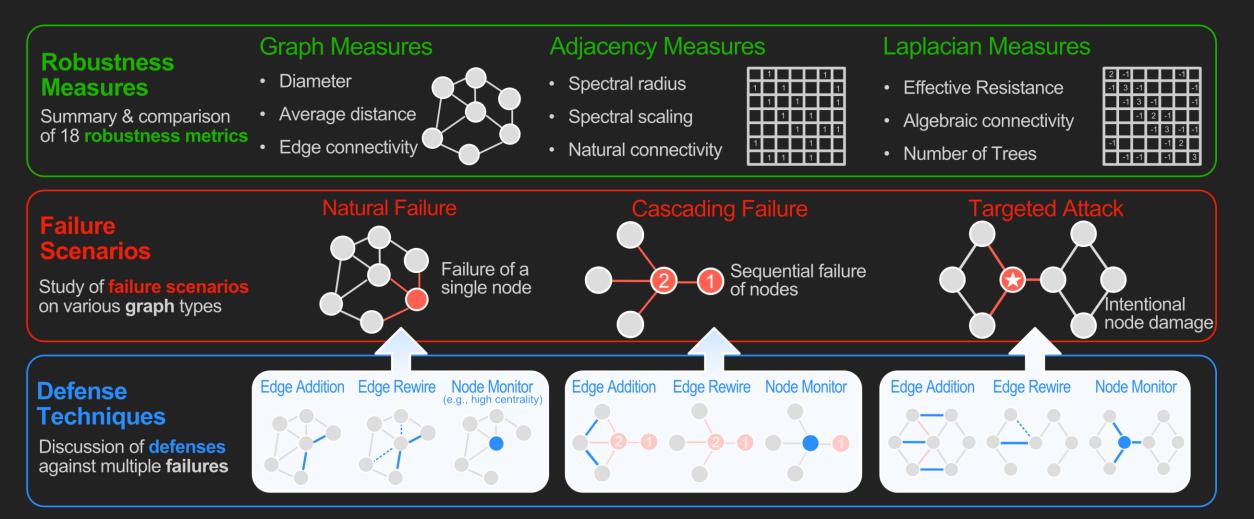
Survey Highlights

Comprehensively survey and compare **85** high-impact and recent papers in the field of graph robustness

Each row is one work, columns are grouped into one of three categories—robustness measures, attacks, and defenses.

	_					R	obu	stne		Mea	sure	s						Att	ack	De	efen	se	Where
Work	2.1.1 Binary Connectivity	2.1.2 Vertex Connectivity	2.1.3 Edge Connectivity	2.1.4 Diameter	2.1.5 Average Distance	2.1.6 Avg. Vertex Betweenness	2.1.7 Avg. Edge Betweenness	2.1.8 Global Clustering Coefficient		2.2.1 Spectral Radius	2.2.2 Spectral Gap	2.2.3 Natural Connectivity	2.2.4 Spectral Scaling	2.2.5 Generalized Robustness Index	2.3.1 Algebraic Connectivity	2.3.2 Number of Spanning Trees	2.3.3 Effective Resistance	3.3 Node Removal	3.3 Edge Removal	4.1.1 Edge Addition	4.1.2 Edge Rewiring	4.1.3 Node Monitoring	Publication Venue
Albert,et.al. [12]																							Nature
Alenazi,et.al. [13]																							RNDM
Alenazi,et.al. [14]										i													DRCN
Baig,et.al. [15]																							Web
Baras,et.al. [16]																							CDC
Berdica [17]																							A-POL
Bernstein, et.al. [18]																							INFO
Beygelzimer,et.al. [3]										1													Physica A
Bigdeli,et.al. [19]																							SIMPLEX
Bishop,et.al. [20]																							EPL
Bocca,et.al. [21]																							PR
Borgatti,et.al. [22]																							SN
Briesemeis.,et.al. [23]																							WORM
Buldyrev,et.al. [24]		-	-		-																		Nature
Byrne,et.al. [25]										1													Sandia
Caballero,et.al. [26]									÷.								_		•				NDSS
Callaway,et.al. [27]									· · ·	1													PRL SDM
Chan,et.al. [28] Chakrabarti,et.al. [29]																	_						TOPS
Chan,et.al. [7]																						-	DMKD
Chen,et.al. [30]																							TKDE
Chen,et.al. [31]																						-	ICDM
Chen,et.al. [32]																							TKDD
Crucitti,et.al. [33]										-									-	-			PRE
Dekker [34]										1													ACSC
Derrible,et.al. [35]																							Physica A
Duan,et.al. [36]										i				1									Physica A
Ellens,et.al. [37]																							LAA
Ellens,et.al. [6]																							arXiv
Estrada,et.al. [38]																							Physica B
Estrada,et.al. [39]																							EPL
Freitas,et.al. [40]																							SDM
Freitas, et.al. [41]																							arXiv
Gao,et.al. [42]										i .					i								PRL
Ghosh,et.al. [43]																							SIREV
Holme,et.al. [44]								-															PRE
Holmgren [45]																							RA
Jamakovic,et.al. [46]																							NGI
khalil,et.al. [47]																							KDD EPJ B
Kinney,et.al. [48]	-				÷.												_					_	
Klau,et.al. [49]																							Net. Anal.
Latora, et.al. [50]																							PRE SDM
Le,et.al. [51] Leskovec,et.al. [52]																							KDD
Leskovec,et.al. [52] Liu,et.al. [53]																					1	.8	FCS
Lu,et.al. [53]						1	7								-			Ξ.			1	.0	PLOS One
Malliaros,et.al. [55]																							SDM
Mamaros,er.al. [35]										1	_		_	-		_							CDm

Survey Overview



Recap: Survey Contributions

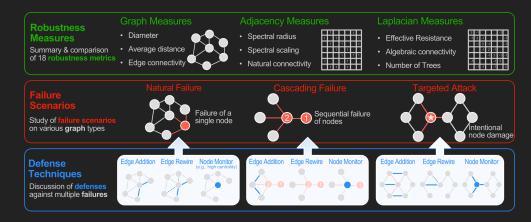
C1. Summary and comparison of 18 robustness measures

C2. Exploration of robustness measure applications

C3. Overview of network attack strategies

C4. Comparison of network defense mechanisms

C5. Highlight open problems and research directions



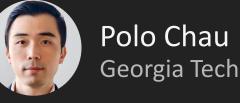
TIGER Robustness Toolbox Evaluating Graph Vulnerability and Robustness using TIGER

Scott Freitas Georgia Tech

Diyi Yang Georgia Tech

Srijan Kumar Georgia Tech

Hanghang Tong



TIGER Overview

Available at https://github.com/safreita1/TIGER

Part of Nvidia Data Science Teaching Kit

TIGER is a GPU accelerated Python library and part of the Nvidia Data Science Teaching Kit

- **1. Quantify** network *vulnerability* and *robustness*
- 2. Simulate a variety of network attacks, cascading failures and spread of dissemination of entities
- **3. Augment** a network's structure to resist *attacks* and recover from *failure*
- 4. Regulate the dissemination of entities on a network (e.g., viruses, propaganda)

TIGER Contributions

- 1. First open-source Python toolbox to evaluate graph vulnerability and robustness
- 2. 22 robustness measures with original and fast approximate versions
- **3.** 17 failure and attack mechanisms
- 4. 15 defense techniques (heuristic and optimization-based)
- **5. 4** network simulation techniques for cascading failures and entity dissemination

Robustness Measure	Category
Vertex connectivity	Graph
Edge connectivity	Graph
Diameter	Graph
Average distance	Graph
Average inverse distance	Graph
Average vertex betweenness	Graph
Average edge betweenness	Graph
Global clustering coefficient	Graph
Largest connected component	Graph
Spectral radius	Adjacency matrix
Spectral gap	Adjacency matrix
Natural connectivity	Adjacency matrix
Spectral scaling	Adjacency matrix
Generalized robustness index	Adjacency matrix
Algebraic connectivity	Laplacian matrix
Number of spanning trees	Laplacian matrix
Effective resistance	Laplacian matrix

Quantifying Robustness

22 robustness measures

9 graph measures +2 approximate versions

5 adjacency matrix measures + 1 approximate version

3 Laplacian matrix measures +2 approximate versions

17 Failure and Attack Mechanisms

Networks can suffer from natural failures and targeted attacks.

TIGER simulates a node attack (red) on the Kentucky KY-2 water distribution network (right)

Step 0 Step 13 Step 22

Node Attack on Water Distribution Network

15 Defense Techniques

TIGER virus simulation using SIS infection model

- **Top**: no defense results in an endemic virus
- **Bottom**: defending 5 nodes with Netshield eradicates virus

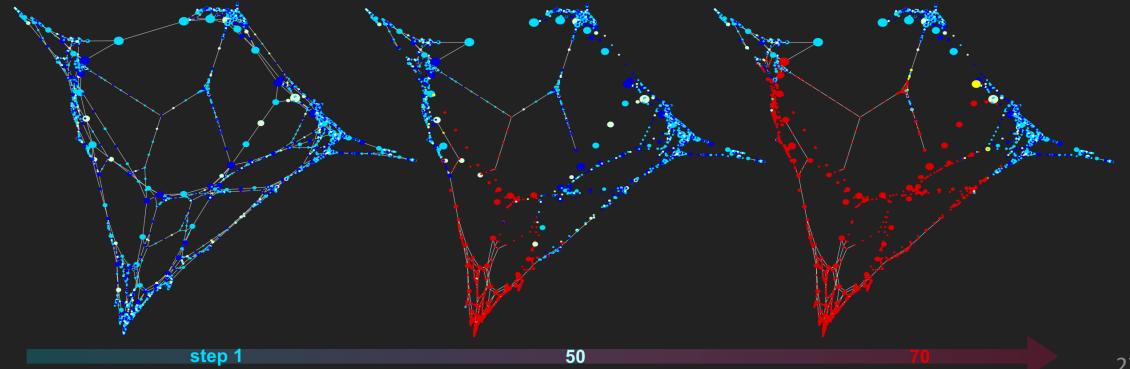
Oregon-1 Autonomous System Network

No defense 26 With defense

Simulation Techniques

(1) entity dissemination, (2) cascading failures, (3) attacks, and (4) defenses

Example: cascading failure simulation on U.S. power grid when 4 substations are attacked



Dissertation Research Mission

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: **Tools**

Robustness Survey Summarize robustness literature TKDE 2021 (under review) **TIGER** Vulnerability and robustness toolbox CIKM 2021

Part II: Algorithms

Part III: Databases

Part IV: Models **D²M** Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph database NeurIPS 2021MalNet-ImageLargest cybersecurity image database Submitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 REST Identify robust signals in health data Web Conference 2020

Part II: Algorithms

Through our survey and development of TIGER, we find that network robustness has yet to address important issues in cybersecurity

This observation motivated us to study the robustness of authentication graphs in enterprise networks

D²M Quantify network robustness + mitigate attacks SDM 2020

Dynamic Defense and Modeling of Adversarial Movement in Networks

SDM 2020

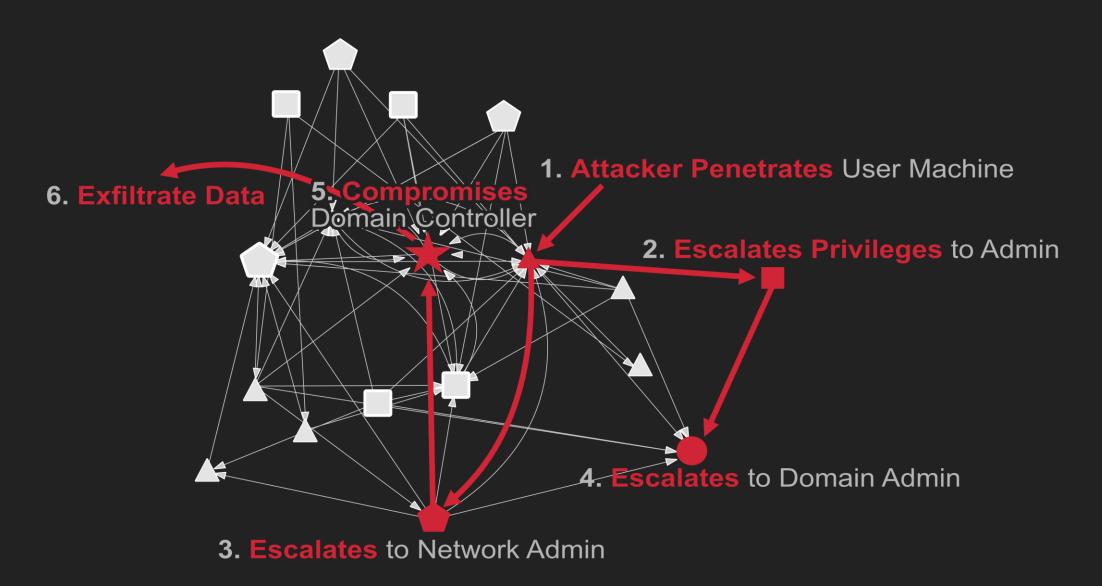
Scott Freitas Georgia Tech

Andrew Wicker Microsoft

Joshua Neil Securonix

Polo Chau Georgia Tech

Lateral Movement Attack Chain



Defender's Dilemma

Goal: Develop defense strategies and vulnerability analysis for lateral attacks

Problem: Sparse observable data on lateral attacks

- Ground-truth partially uncovered through investigation
- Incident reports are withheld for security and privacy
- Can not store network telemetry for more than 6 months (GDPR)
- Attackers can operate as legitimate users

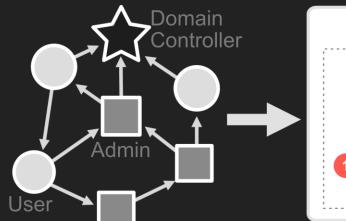
Defender's Solution

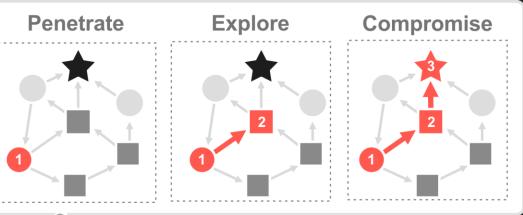
Goal: Develop defense strategies and vulnerability analysis for lateral attacks

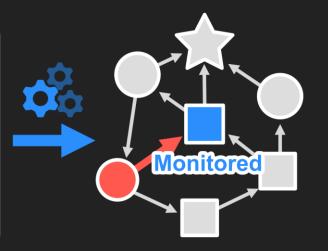
Idea: Simulate lateral attacks on enterprise networks

- Develop realistic lateral attack environment
- Model multiple attack strategies
- Incorporate domain knowledge

Defender's Solution: D²M Framework







Build authentication graph

Contribution 1 Simulate lateral attack

Contribution 2 Quantify Vulnerability Contribution 3 Identify at-risk machine to monitor

Authentication Graph and Domain Knowledge

Network activity forms a directed graph G = (V, E)

- *V* = set of network machines
- *E* = set of edges representing authentication activity between machines
- Collect *V, E* over a period of 30 days

Penetrate: Attacker can start on any machine with lowest credential
Explore and exploit: Move randomly or using knowledge of network topology
Exfiltrate: Once adversary reaches domain controller, the simulation ends

Attack Strategies: Uniformed Exploration

Strategy 1: RandomWalk-Explore (RWE)

- 85% chance attacker uniformly selects a neighbor
- 15% chance attacker randomly selects a c₁ machine; model randomness
- After visiting, attacker gains the machine's credential

Quantifying Network Vulnerability

Vulnerability: risk of domain controller being compromised by lateral attack

Define as function of 3 components:

- 1. Network topology
- 2. Distribution of credentials
- 3. Attacker penetration point

In practice:

- Don't know true credential distribution
- Don't know penetration point

Monte-Carlo To The Rescue

- Larger score = more vulnerable network
- f(·) simulates network attack (1=success, 0=failure)
- Sum over different penetration points
- Sum over different credential distributions
- Sum over different hygiene levels

$$L(G,h) = \frac{1}{|D_h|} \frac{1}{|\mathbf{R}|} \sum_{d \in D_h} \sum_{v \in \mathbf{R}} f(G,d,v) \qquad L(G) = \sum_{h_i \in H} p(h_i) \cdot L(G,h_i)$$

Identifying At-Risk Machines

Utilize network topology + attack path activity

Strategy 1: Random Anomalous Neighbor

Vaccinate neighbors of random anomalous machines w/ weight towards recent activity

Strategy 2: AnomalyShield

Vaccinate machines w/ high eigenvector centrality (u) and that are near anomalous activity (a)

$$AV(S_k) = \sum_{i \in S_k} \mathbf{u}(i) \sum_{j \in N(i)} \mathbf{a}(j) \mathbf{u}(j)$$

Experiment Setup

Data from three networks

2 Microsoft tenants G_s, G_l; Los Alamos National Lab dataset G_{lanl}

	V	E	ρ	С	Avg. Degree
Gs	100	279	0.028	0.23	5.58
GI	2,039	3,853	0.001	0.26	3.78
G_{lanl}	14,813	223,399	0.001	0.62	30.16

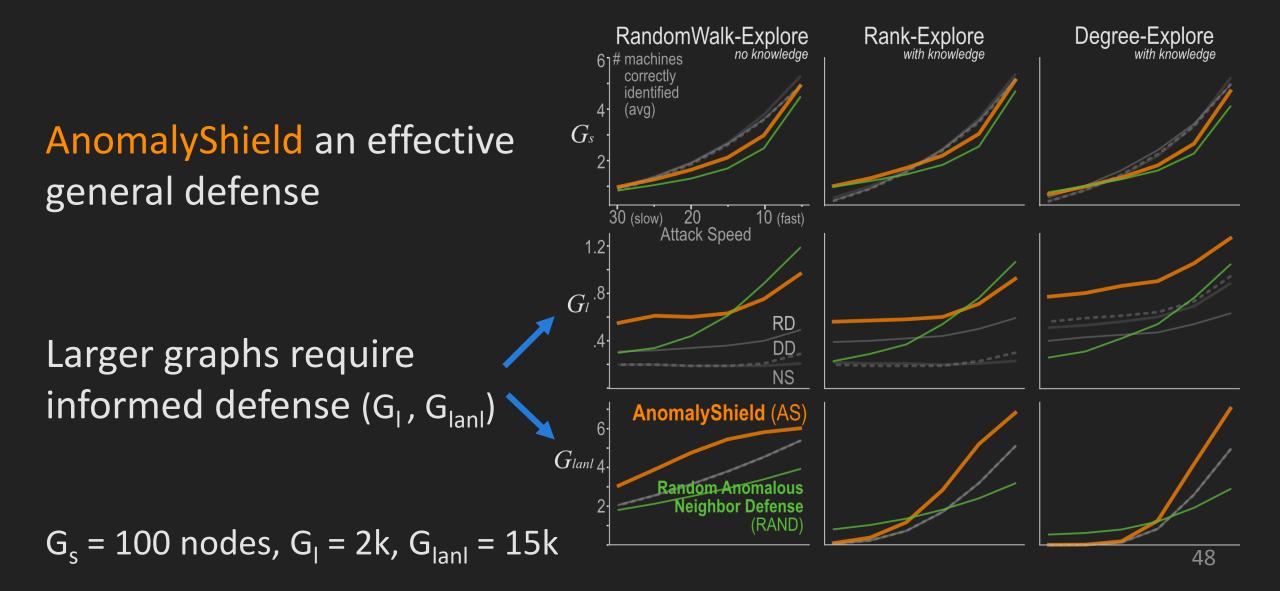
Network Statistics. From left to right: number of vertices |V|, number of edges |E|, density ρ , average clustering coefficient *C*, average out-degree of nodes in *G*.

Quantifying Network Vulnerability

- Informed strategies lead to quicker attacks
- Improving hygiene reduces vulnerability (h₁=bad hygiene)
- Networks that are more wellconnected are more vulnerable to lateral attacks

			Avg,	Path Ler	ngth	Vulnerability (higher = more vulnerable)			
	Graph	Hygiene	RE	DE	RAND	L(G <i>,</i> h)	L(G)		
		h ₁	19	19	25	.773			
	Gs	h ₂	49	39	39	.801	.525		
		h ₃	0	0	0	0			
		h ₁	33	36	46	.005			
	G _I	h ₂	63	63	68	.006	.005		
2		h ₃	133	139	139	.004			
		h ₁	22	18	45	<mark>.967</mark>			
	G _{lanl}	h ₂	88	128	90	<mark>.981</mark>	.976		
		h ₃	-	-	249	<mark>.981</mark>			

Identifying At-Risk Machines



Dissertation Research Mission

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: **Tools**

Part II: Algorithms

Part III: Databases

Part IV: Models **Robustness Survey** Summarize robustness literature TKDE 2021 (under review) **TIGER** Vulnerability and robustness toolbox CIKM 2021

D²M Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph databaseNeurIPS 2021MalNet-ImageLargest cybersecurity image databaseSubmitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 **REST** Identify robust signals in health data Web Conference 2020

Part III: Databases

In Part II, we focused on post-breach adversarial modeling and mitigation, in Part III our goal is to prevent lateral attacks altogether.

However, current databases are either too small or not publicly available. By creating new large-scale databases, we enable the development of nextgeneration malware detection models

MalNet-Graph

A Large-Scale Database for Graph Representation Learning

NeurIPS Datasets and Benchmarks 2021

Scott Freitas Georgia Tech

Yuxiao Dong Facebook Al

Joshua Neil Securonix

Polo Chau Georgia Tech

MalNet Overview

Available at github.com/safreita1/malnet-graph

Part of Nvidia Data Science Teaching Kit

MalNet is a graph representation learning database with 1.2M graphs, 696 classes, and 15k nodes & 35k edges per graph

- **1. Highlight** the importance of scalable graph representation learning techniques
- 2. Reveal the challenges of working with highly imbalanced graph data
- **3.** Showcase the effectiveness of simple baselines on non-attributed graphs
- **4. Enable** new research into imbalanced classification, explainability, and the impact of class hardness

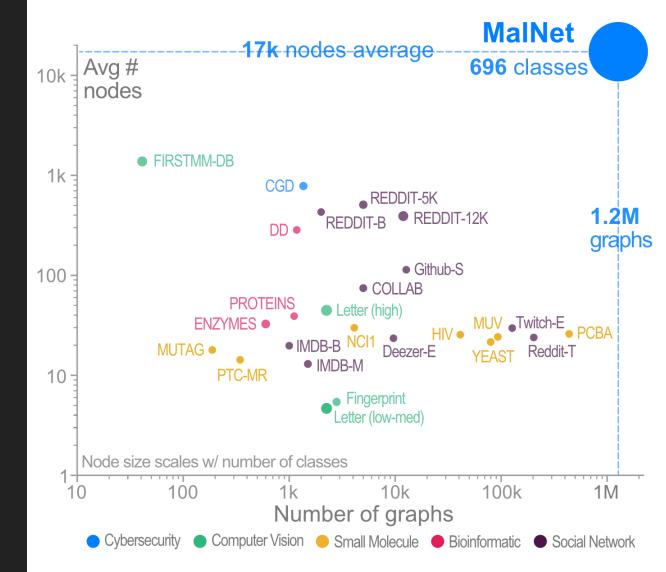
Why MalNet-Graph?

Number of limitations with existing graph classification databases

- 1. contain relatively few graphs
- 2. small graphs, terms nodes and edges
- 3. limited number of classes

Compared to the popular REDDIT-12K database, we offer

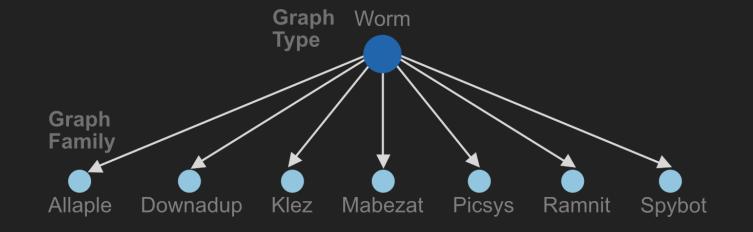
- 1. 105x more graphs
- 2. 44x larger graphs on average
- 3. 63x more classes



Collecting Candidate Graphs

Select Android ecosystem for

- 1. large market share
- 2. easy accessibility
- 3. diversity of malware



Collecting took 1 month and 10TB of storage

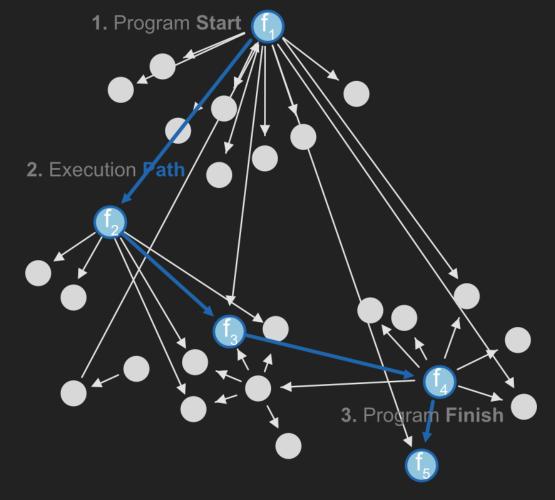
- 1. Collect Android APK files from AndroidZoo
- 2. Select files with *type* and *family* labels
- 3. Collect raw VirusTotal reports for each file

Processing the Graphs

Extract function call graph (FCG) from APK

Directed graph containing disconnected components and isolates

443GB of disk space; edge list format for wide support, readability, and ease of use



Example function call graph

MalNet for New Research and Discoveries

Revealing new discoveries

- 1. Graph representation learning scalability and large class imbalance issues
- 2. Simple baselines are surprisingly effective
- 3. GNNs are not state-of-the-art

Enabling new research directions

- 1. Imbalanced classification
- 2. Explainability
- 3. Class hardness

Experiment Setup

- Split MalNet-Graph data 70/10/20 for training, validation, test
- Create MalNet Tiny containing 5k graphs across 5 balanced classes
- Evaluate 7 state-of-the-art methods using macro-F1 score
 - 2 GNNs (GCN, GIN) and 5 DM techniques (LDP, NoG, Feather, Slaq-VNGE, Slaq-LSD)
- Each GNN has a parameter search over Ir and hidden units
 - Took 26 days to complete on Nvidia DGX A100
- DM techniques have parameter search over method and RF model

Graph Classification Experiments

- Less diversity, better performance
- Simple baselines surprisingly effective
- GNNs not state-of-the-art

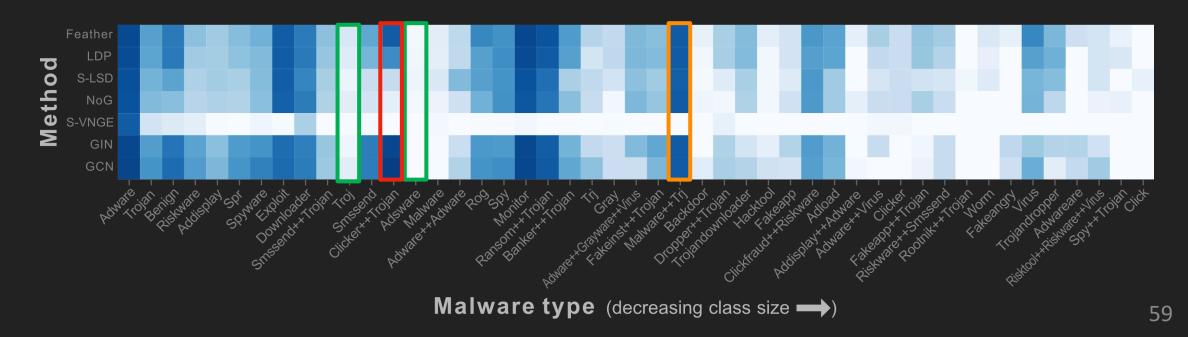
Method	Тур	e (47 classes)		Famil	Tiny		
Method	Macro-F1	Precision	Recall	Macro-F1	Precision	Recall	Accuracy
Feather	.41	.71	.35	.34	.56	.29	.86
LDP	.38	.69	.31	.34	.55	.28	.86
GIN	.39	.57	.36	.28	.32	.28	.90
GCN	.38	.51	.35	.21	.24	.21	.81
Slaq-LSD	.33	.62	.26	.24	.42	.19	.76
NoG	.30	.62	.25	.25	.42	.21	.77
Slaq-VNGE	.04	.07	.04	.01	.01	.01	.53

58

Graph Classification Experiments

Class hardness exploration—*Malware++Trj* outperforms *Troj* and *Adsware*, which contain many more examples

Explainability research—why does Feather, GIN, GCN outperform on Clicker++Trojan



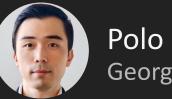
MalNet-Image

A Large-Scale Image Database of Malicious Software

Submitting to CIKM 2022

Scott Freitas Georgia Tech

Rahul Duggal Georgia Tech



Polo Chau Georgia Tech

Why MalNet-Image?

- Over 1.2M images across 47 types and 696 families
- 24x more images, 70x more classes compared to the next largest database
- Enable large-scale malware detection and classification research

	Dataset	Images	Classes
	MalNet	1,262,024	696
Public	Virus-MNIST	51,880	10
	Malimg	9,458	25
	Stamina	782,224	2
	McAfee	367,183	2
	Kancherla	27,000	2
Private	Choi	12,000	2
	Fu	7,087	15
	Han	1,000	50
	IoT DDoS	365	3

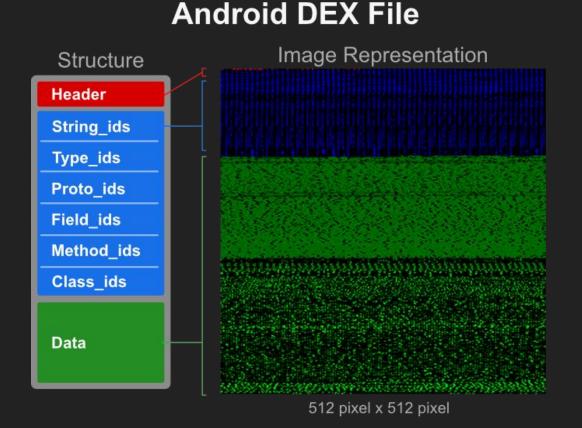
MalNet-Image Construction

Collecting candidate images

- APK files from AndroZoo repository
- 1-1 match with FCGs from MalNet-Graph

Processing the images

- Extract DEX file from each APK
- Convert DEX to 1D array of 8-bit integers
- Convert 1D array to 2D array
- RGB color coded channels represent structure information



62

Experiment Setup

- MalNet-Image data split 70/10/20 for training, validation, test
 - Stratified split across binary, type and family labels, respectively
- Evaluate 7 DL models using macro-F1 score
 - 3 ResNet (18, 50, 101), 2 DenseNet (121, 169), and 2 MobileNetV2 (x.5, x1)
- Each model is trained for 100 epochs using an Adam optimizer
- Experiments run on an Nvidia DGX-1 containing 8 V100 GPUs

Benchmarking Techniques

We evaluate numerous malware detection and classification techniques, previously studied on private or small-scale databases, such as

- Semantic information encoding via colored channels vs grayscale
- Deep learning model architectures (ResNet, DenseNet, MobileNetV2)
- Model pretraining on ImageNet versus training from scratch
- Imbalanced classification techniques (focal loss, class reweighting)

Select ResNet-18 model trained from scratch on grayscale images using CE loss and class reweighting due to strong performance and quick training

Malware Classification Capabilities

- Promising malware detection results
- Type level performance on-par with family level
- Image models significantly outperform FCG based methods

Model	Darame	MFlops		Binary		Type (47 classes) Fan				nily (696 classes)		
	Faranis	ινιεισμο	F1	Prec.	Recall	M-F1	Prec.	Recall	M-F1	M-F1 Prec.	Recall	
ResNet18	12M	1,820	.86	.89	.84	.47	.56	.42	.45	.54	.42	
ResNet50	26M	3,877	.85	.91	.81	.48	.57	.44	.47	.54	.44	
ResNet101	45M	7,597	.86	.88	.84	.48	.59	.44	.47	.54	.44	
DenseNet121	7.9M	2,872	.86	.90	.83	.47	.56	.43	.46	.53	.44	
DenseNet169	14M	3,403	.86	.89	.84	.48	.57	.43	.46	.53	.43	
MobileNetV2 (x.5)	1.9M	100	.86	.89	.83	.46	.55	.42	.45	.53	.42	
MobileNetV2 (x1)	3.5M	329	.85	.89	.83	.45	.53	.42	.44	.53	.41	

Dissertation Research Mission

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: **Tools**

Part II: Algorithms

Part III: Databases

Part IV: Models Robustness Survey Summarize robustness literature ткDE 2021 (under review) TIGER Vulnerability and robustness toolbox сікм 2021

D²M Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph databaseNeurIPS 2021MalNet-ImageLargest cybersecurity image databaseSubmitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 **REST** Identify robust signals in health data Web Conference 2020

Part IV: Models

Having access to large-scale robust data, doesn't guarantee model robustness. Therefore, we focus on developing robust models

Specifically, our goal is to tackle two high-impact societal problems in **cybersecurity** and **healthcare** affecting millions of lives—*through the lens of robust deep learning models*

Adversarial Detection and Defense Through Robust Feature Alignment

IEEE Big Data 2020

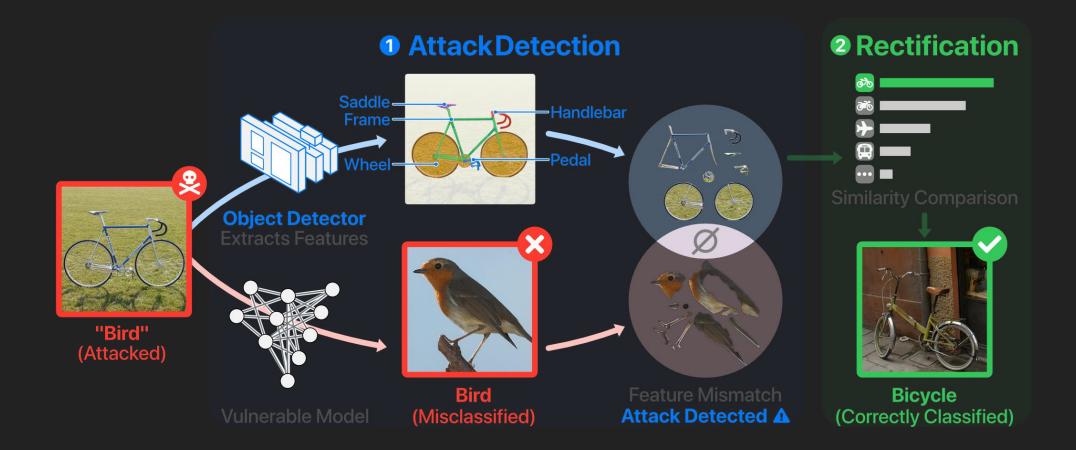
Scott Freitas Georgia Tech

Shang-Tse Chen National Taiwan University

Polo Chau Georgia Tech

Jay Wang Georgia Tech

Protection Via Robust Feature Alignment

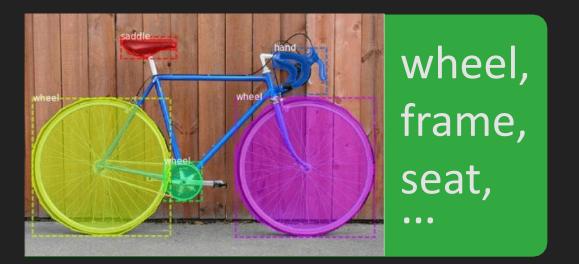


Robust Features \rightarrow Robust Model

Robustness is a function of the data [Ilyas 2019]

- Adversarial examples attributed to non-robust features
- Non-robust features predictive but not human comprehensible
- Training only on robust features significantly lowers benign accuracy

Image's Robust Features



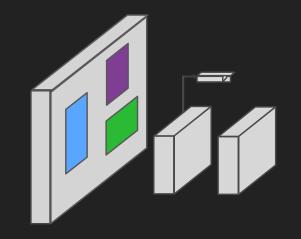
Bike's Robust Features

- Human comprehensible
- Forms foundation for adversarial defense

Extracting the Robust Features

Obtaining robust features

- Mask-RCNN trained on segmentation masks
- One mask per robust feature
- Dataset has 44 robust features
- e.g., Bike: wheel, seat, frame



Mask R-CNN

Experiment Setup: Datasets

Building-block extractor (Mask R-CNN)

- Based on Feature Pyramid Network and ResNet101
- Trained and evaluated using PASCAL-Part dataset

Vulnerable CNN models

- ResNet50, DenseNet121
- Trained on PASCAL-VOC 2010; evaluated on Flickr

Detection and defense

• Flickr, matching PASCAL-VOC classes

Experiment Setup: Evaluation

Four adversarial attacks

• PGD-L_{∞}, PGD-L₂, MI-FGSM L_{∞}, MI-FGSM L₂

Four levels of feature overlap

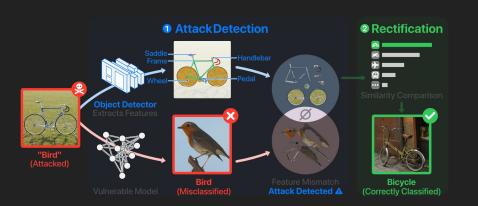
• Test's effectiveness of robust feature alignment in different setups

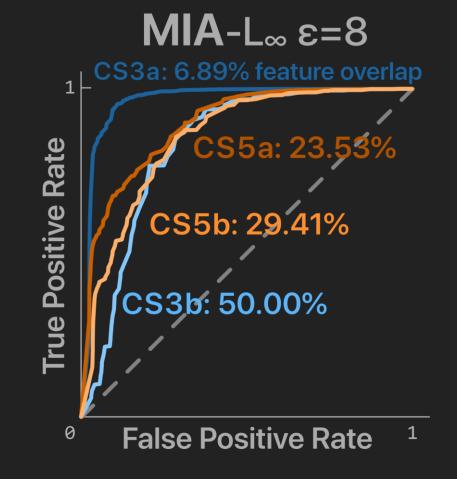
Class Set	Classes	Unique Parts	Overlap
CS3a	3	29	6.89%
CS3b	3	18	50.00%
CS5a	5	34	23.53%
CS5b	5	34	29.41%

Detecting Attacks

Evaluating detection of adversarial images

- 50:50 ratio of benign/adversarial
- Low feature overlap, better performance
- Feature selection more important than number of features





Countering Attacks

UnMask outperforms adversarial training



Robust and Efficient Neural Networks for Sleep Monitoring in the Wild

Web Conference (WWW) 2020

Rahul Duggal*

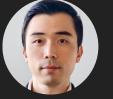
Georgia Tech

Cao Xiao Amplitude

Jimeng Sun UIUC

Scott Freitas*

Georgia Tech

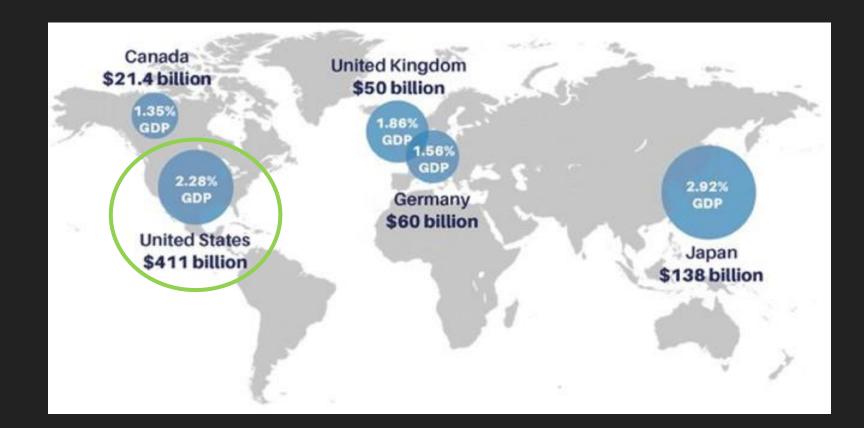


Polo Chau Georgia Tech

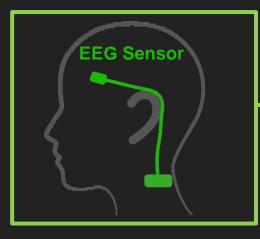
*Equal contribution

Importance of Sleep Diagnosis

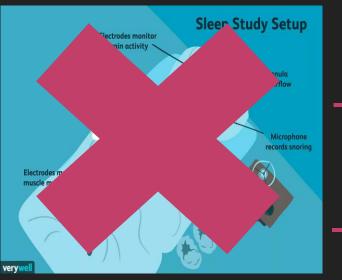
Imperative to develop accurate and efficient sleep assessments



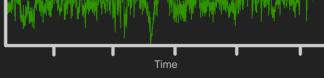
Sleep Diagnosis Workflow



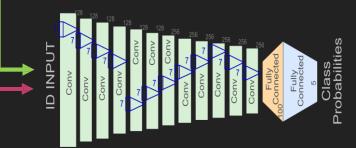
1. Overnight sleep exam



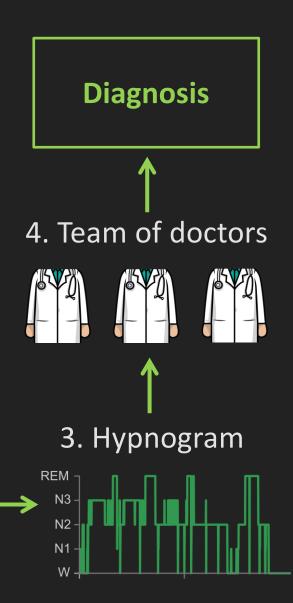
1. At home monitoring



2. Deep neural network

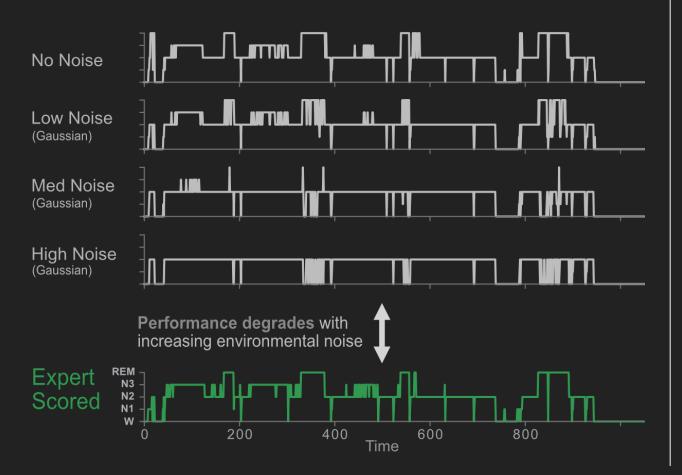


- Costly
- Invasive
- Inconvenient



Key Challenges

Susceptibility to noise



Latency and energy use

Inference Time

(in seconds; shorter is better)

EDF 30

SHHS 355

Energy Usage

(in joules; shorter is better)

EDF 909

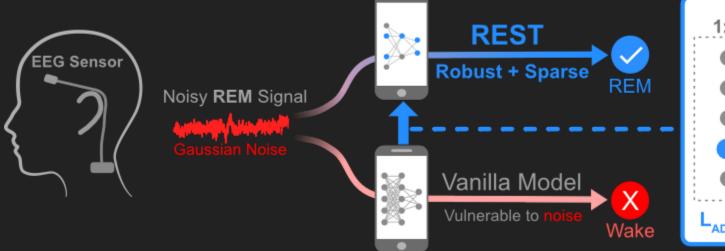
SHHS 1143

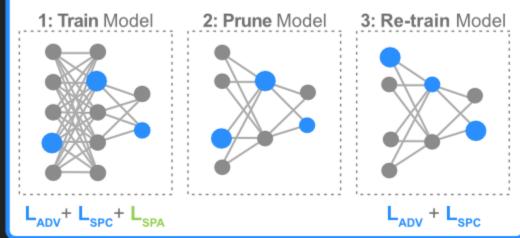
REST Process

Develop neural networks for home sleep monitoring that are

- 1. Robust to noise
- 2. Energy and compute efficient

REST-Process





Evaluation: Setup

Datasets

Sleep-EDF

- Collected at home
- More noisy

SHHS

- Collected in sleep lab
- Less noisy

Metrics

Noise robustness

Macro-F1 score avg. over test patients

Efficiency

- FLOPS to score one EEG input
- Inference time to score one night
- Joules to score one night

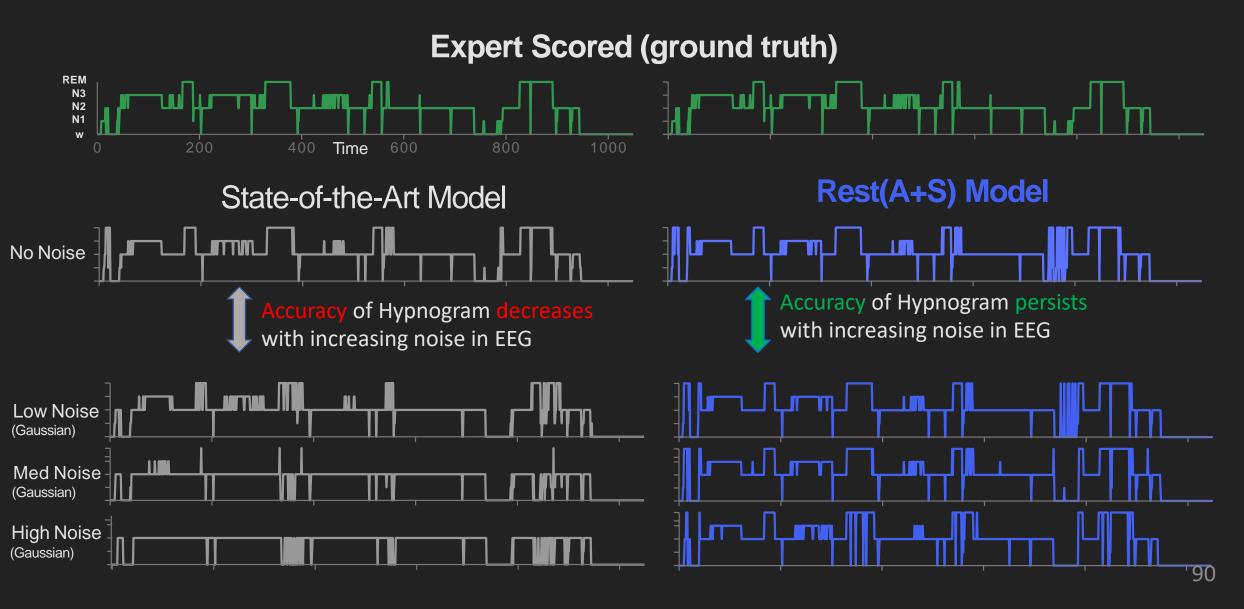
Measured on Pixel-2 phone

Noise Robustness

REST models perform well in noisy environments

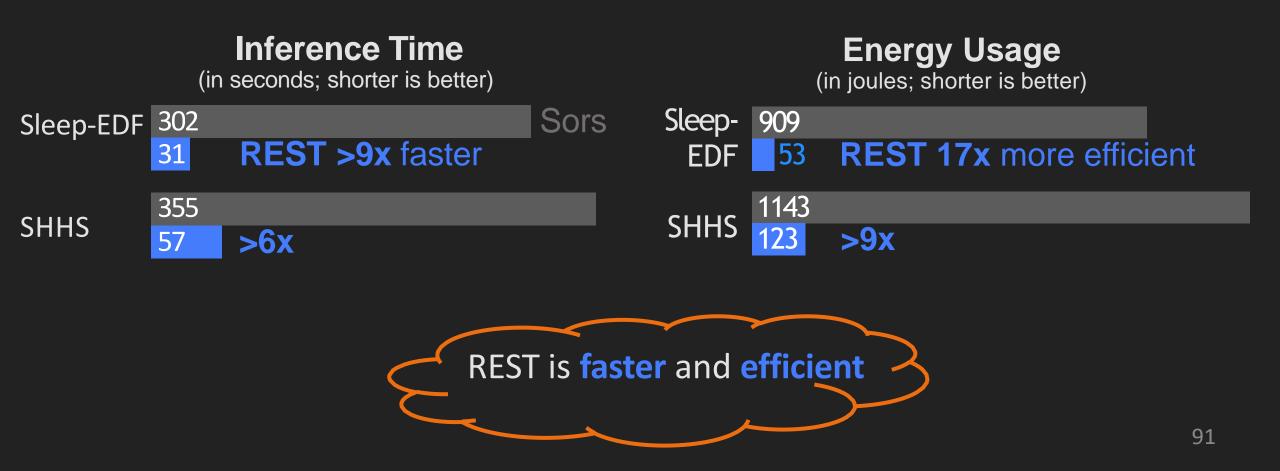
				Adversarial			Gaussian			Shot		
Data	Method	Compress	No noise	Low	Med	High	Low	Med	High	Low	Med	High
	Sors [32]	×	0.67 ± 0.02	0.57 ± 0.02	0.51 ± 0.04	0.19 ± 0.06	0.66 ± 0.03	0.60 ± 0.03	0.39 ± 0.08	0.58 ± 0.04	0.42 ± 0.08	0.11 ± 0.03
EDF	Liu [26]	1	0.69 ± 0.02	0.52 ± 0.07	0.41 ± 0.07	0.09 ± 0.02	0.67 ± 0.02	0.53 ± 0.02	0.28 ± 0.04	0.52 ± 0.03	0.31 ± 0.04	0.06 ± 0.01
p-l	Blanco [7]	1	0.68 ± 0.01	0.51 ± 0.06	$0.40\ \pm\ 0.06$	0.09 ± 0.02	$0.65\ \pm\ 0.02$	0.54 ± 0.04	0.31 ± 0.10	$0.53\ \pm\ 0.04$	0.34 ± 0.09	0.08 ± 0.02
Sleep-EDF	Ford [15]	1	0.64 ± 0.01	0.59 ± 0.01	0.60 ± 0.02	0.31 ± 0.08	$0.65 \ \pm \ 0.01$	0.67 ± 0.02	0.57 ± 0.03	0.67 ± 0.02	0.60 ± 0.02	0.10 ± 0.01
	Rest (A)	1	0.66 ± 0.02	0.64 ± 0.02	0.64 ± 0.02	0.61 ± 0.02	0.66 ± 0.02	0.67 ± 0.01	0.66 ± 0.01	0.67 ± 0.01	0.66 ± 0.01	0.42 ± 0.06
	Rest (A+S)	1	$\boldsymbol{0.69} \pm 0.01$	$\boldsymbol{0.67} \pm 0.02$	$\textbf{0.66} \pm 0.01$	0.61 ± 0.03	$\textbf{0.69}~\pm~0.01$	0.68 ± 0.01	0.67 ± 0.02	$\boldsymbol{0.68} \pm 0.01$	0.67 ± 0.02	$\boldsymbol{0.42} \pm 0.08$

Noise Robustness



Model Efficiency

Performance evaluated on pixel 2 smartphone



Dissertation Research Mission

Address large-scale societal problems in cybersecurity and healthcare through the lens of robust machine learning

Part I: **Tools**

Part II: Algorithms

Part III: Databases

Part IV: Models **Robustness Survey** Summarize robustness literature TKDE 2021 (under review) **TIGER** Vulnerability and robustness toolbox CIKM 2021

D²M Quantify network robustness + mitigate attacks SDM 2020

MalNet-GraphLargest cybersecurity graph databaseNeurIPS 2021MalNet-ImageLargest cybersecurity image databaseSubmitting to CIKM 2022

UnMask Identify robust features in images IEEE Big Data 2020 REST Identify robust signals in health data Web Conference 2020