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ABSTRACT

With the rise of the Big Data Era, an exponential amount of network data is

being generated at an unprecedented rate across a wide-range of high impact micro

and macro areas of research—from protein interaction to social networks. The critical

challenge is translating this large scale network data into actionable information.

A key task in the data translation is the analysis of network connectivity via

marked nodes—the primary focus of our research. We have developed a framework

for analyzing network connectivity via marked nodes in large scale graphs, utilizing

novel algorithms in three interrelated areas: (1) analysis of a single seed node via

its ego-centric network (AttriPart algorithm); (2) pathway identification between two

seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR)

algorithm); and (3) tree detection, defining the interaction between three or more

seed nodes (Shortest Path MST algorithm).

In an effort to address both fundamental and applied research issues, we have

developed the LocalForcasting algorithm to explore how network connectivity analysis

can be applied to local community evolution and recommender systems. The goal is

to apply the LocalForecasting algorithm to various domains—e.g., friend suggestions

in social networks or future collaboration in co-authorship networks. This algorithm

utilizes link prediction in combination with the AttriPart algorithm to predict future

connections in local graph partitions.

Results show that our proposed AttriPart algorithm finds up to 1.6× denser local

partitions, while running approximately 43× faster than traditional local partitioning

techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demon-

strates a significant improvement in the number of nodes and edges correctly predicted

over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate

a speed-up of up to 2.5× the standard k-simple shortest paths algorithm.
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Chapter 1

INTRODUCTION

Every day, enormous amounts of network data is being generated in a variety of

fields ranging from social media to health. This research is an attempt to analyze

this network data from the viewpoint of seed nodes in a graph—with the goal of

understanding how these seed nodes relate to one another, and to their surrounding

neighbors. However, real world networks often subject to two important factors, (1)

they are typically rich graphs with attribute data and (2) they can be incredibly

large—up to hundreds of millions of nodes and edges. This research will make use

of this information and address it in the development of it’s analysis and algorithmic

formulations.

1.1 Acknowledgments

This work is partially supported by the National Science Foundation under Grant

No. IIS-1651203, IIS-1715385 and IIS-1743040, by DTRA under the grant number

HDTRA1-16-0017, by Army Research Office under the contract number W911NF-

16-1-0168, and gifts from Huawei and Baidu.

1.2 Objective

The fundamental research objectives are three fold—(1) analyze the network con-

nectivity of a graph given a set of two or more seed nodes, (2) determine the ego-centric

graph of a given seed node by means of local graph partitioning and (3) make the

outcomes of this research accessible and interactive to the user. To accomplish this

we propose a series of sub-goals.
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(1) To determine the network connectivity between two or more seed nodes we plan

to use two algorithms—(a) k-simple shortest paths and (b) minimum spanning tree for

a subset of nodes. In addition to the baseline versions of these algorithms we propose

to introduce novel methods of speeding up the network analysis computations by

using (i) parallel processing, (ii) network search space reduction and (iii) subsequent

graph re-query of prior network analysis.

(2) To analyze the ego-centric graph of a given seed node by means of local graph

partitioning we introduce AttriPart which incorporates the additional information

found in rich graphs instead of using the network structure (Nibble Spielman and

Teng (2013) and PageRank-Nibble Andersen et al. (2006)).

1.3 Importance

This research has broad applications in a wide variety of use cases. Three of these

major use cases are (1) social media, (2) map routing and (3) internet connectivity.

In terms of (1) social media analysis, two important foundational research ques-

tions this thesis addresses are—(a) how do you quickly determine how a given user

relates to one ore more people in a network and (b) how do you find better ego-

centric graphs by incorporating attribute information as opposed to using topological

connections alone.

Once these foundational research questions are addressed, we can ask more ap-

plicative questions such as—(a) how does a local community evolve over time, (b) how

can you create enhanced user or product recommendations, (c) what kind of knowl-

edge can be extracted from the network connectivity and local graph partitioning and

(d) what kind of decisions can be made based on this extracted knowledge.

When looking at (2) map routing networks, this research can allow us to quickly

find the k-simple shortest paths between the place you’re currently at and where you

2



want to go (e.g. destination routing). An example where the ‘k’ part of the shortest

paths can be useful is when accidents exist on the shortest route and secondary routes

need to be taken. In addition, we might need to find the most important landmarks

or businesses in the area relative to your current position. This could be done using

local graph partitioning algorithms.

When analyzing (3) internet connectivity between servers, computers, routers,

etc., it can be important to find the k-simple shortest paths between a source and

destination. This kind of analysis is useful to identify the flow of information in the

internet and what routes are available for data transmission.

1.4 Completion Criteria

The criteria to complete the thesis will include three parts. (1) The implemen-

tation of the network connectivity algorithms, including the search space reduction

algorithm, (2) the implementation of the local graph partitioning algorithm that can

utilize the information in rich graph attributes for enhanced analysis and (3) the

development of a web platform (PathFinder: www.path-finder.io) to visualize the

network connectivity.

3
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Chapter 2

LITERATURE SURVEY

2.1 Local Graph Partitioning

The goal of local clustering algorithms is to find a set of vertices in the surrounding

area of a given seed node such that the set of vertices forms a tight-knit group defined

by the conductance of the set. Converse to the problem of local clustering, global

clustering algorithms take into account the whole network in order to identify all of

the existing network clusters. Both local and global clustering are areas of significant

research and as such we will provide a short, high-level overview of a select few topics

with a focus on the research that pertains to the algorithms we present.

We provide a high level review of both local and global community detection

methods in addition to random walks, with a focus on the research that pertains to

the algorithms we propose in this paper.

A - Local Community Detection. Given an undirected graph, start vertex and a

target conductance—the goal of Nibble is to find a subset of vertices that has con-

ductance less than the target conductance Spielman and Teng (2013). This algorithm

has strong theoretical properties with a run time of O(2b(log6m)/φ4), where b is a

user defined constant, φ is the target conductance and m is the number of edges.

PageRank-Nibble builds on the work of Nibble by introducing the use of personal-

ized PageRank Haveliwala (2003); Tong et al. (2006), in addition to an algorithm

for the computation of approximate PageRank vectors Andersen et al. (2006). Since

PageRank-Nibble and Nibble run on undirected graphs, they use truncated random

walks in order to prevent the stationary distribution from becoming proportional to

4



the degree centrality of each node Grolmusz (2015). There are also many alternative

techniques for local community detection. To name a few, the paper by Bagrow and

Bollt Bagrow and Bollt (2005) introduces a method of local community identification

that utilizes an l-shell spreading outward from a start vertex. However, their algo-

rithm requires knowledge of the entire graph and is therefore not truly local. The

research by J. Chen et. al. Chen et al. (2009) proposes a method for local community

identification in social networks that avoids the use of hard to obtain parameters and

improves the accuracy of identified communities by introducing a new metric. In ad-

dition, the work by Zhou et al. (2017) and Yin et al. (2017) introduces two methods

of local community identification that take into account high-order network structure

information. In Zhou et al. (2017), the authors provide mathematical guarantees of

the optimality and scalability of their algorithms, in addition to the generalization of

it to various network types (e.g. signed and multi-partite networks).

B - Global Community Detection. The basic idea behind the Walktrap algorithm

is that random walks on a graph tend to get ”trapped” in densely connected parts

that correspond to communities Pons and Latapy (2005). Utilizing the properties of

random walks on graphs, they define a measurement of structural similarity between

vertices and between communities, creating a distance metric. The algorithm itself

has an upper bound of O(mn2). Another popular choice for global community de-

tection is spectral analysis. In the paper by M. Newman Newman (2013) it is shown

that the problems of community detection by modularity maximization, community

detection by statistical inference and normalized-cut graph partitioning when tackled

using spectral methods, are in fact, the same problem. The work by S. White et.

al. in White and Smyth (2005) attempts to find communities in graphs using spec-

tral clustering. They achieve this by using an objective function for graph clustering

Newman and Girvan (2004) and reformulating it as a spectral relaxation problem, for

5



which they propose two algorithms to solve it. A systematic introduction to spectral

clustering techniques can be found in von Luxburg (2007). There also exists many

alternative techniques for global community detection. Among others, two interest-

ing techniques relevant to this work are Jaewon yang (2013) Takaffoli et al. (2014).

In Jaewon yang (2013), the authors propose a community detection algorithm that

uses the information in both the network structure and the node attributes, while in

Takaffoli et al. (2014) the authors use network feature extraction to predict the evo-

lution of communities. A detailed review of various community detection algorithms

can be found in Zhao Yang (2016).

C - Random Walks. Random walks have been utilized in many forms, two of which

we focus on in this paper. (1) As a form of node ranking in graphs with use of

PageRank Page et al. (1998) and it’s extension to personalized PageRank Haveliwala

(2003). (2) As a method of subgraph identification Dupont et al. (2017) around

a given seed node. In Dupont et al. (2017) the authors attempt to determine the

relevant subgraph between two or mode seed nodes in a graph using the technique of

random betweenness centrality introduced by M. Newman Newman (2005).

2.2 Network Connectivity

There has been a significant amount of research related to determining the network

connectivity between a set of seed nodes in a graph. In addition, the concept of user-

specific query nodes (seed nodes) has been an active research topic. For example,

Staudt et. al. used user-specific query nodes for community detection via “selSCAN”

Staudt et al. (2014) and Akoglu et. al. used them to find connection pathways Akoglu

et al. (2013). Below, we discuss (1) the related work to the two core algorithms we use

to analyze the network connectivity—K-Simple Shortest Paths and Shortest Paths

MST; (2) related work to the search space reduction algorithm—Key Neighboring

6



Vertices—utilized by the network connectivity algorithms to reduce the run time of

connectivity analysis.

A - Two Seed Nodes: K-Simple Shortest Paths. A theoretical analysis has been

laid out by Ruppert Ruppert (2012), along with the theoretical and experimental

work by Guerriero et. al using a shared memory model Guerriero and Musmanno

(2000). More recently, Singh et. al. used GPUs along with CUDA to parallelize the

algorithm, resulting in impressive speedup Singh and Singh (2015). In addition, two

representative works for connection subgraph identification (i.e. pathway detection)

can be seen in Akoglu et al. (2013) and Faloutsos et al. (2004).

B - Two Seed Nodes: Shortest Paths MST. Related work towards creating a minimum

spanning tree for a susbset of nodes has been done by Cenek et. al. Instead of creating

a shortest paths distance matrix, they proposed to insert the shortest paths into the

tree dynamically Cenek and Hrcka (2015).

C - Search Space Reduction: Key Neighboring Vertices. Sulieman et. al. proposed a

semantic social breadth first search algorithm which takes the top N vertices with the

highest centrality degree and attempts to find the nearby influential players D. Sulie-

man (2013).

7



Chapter 3

LOCAL PARTITIONING IN RICH GRAPHS

Local graph partitioning is a key graph mining tool that allows researchers to iden-

tify small groups of interrelated nodes (e.g. people) and their connective edges (e.g.

interactions). Because local graph partitioning is primarily focused on the network

structure of the graph (vertices and edges), it often fails to consider the additional

information contained in the attributes. In this paper we propose—(i) a scalable al-

gorithm to improve local graph partitioning by taking into account both the network

structure of the graph and the attribute data and (ii) an application of the proposed

local graph partitioning algorithm (AttriPart) to predict the evolution of local

communities (LocalForecasting). Experimental results show that our proposed

AttriPart algorithm finds up to 1.6× denser local partitions, while running approx-

imately 43× faster than traditional local partitioning techniques (PageRank-Nibble

Andersen et al. (2006)). In addition, our LocalForecasting algorithm shows a

significant improvement in the number of nodes and edges correctly predicted over

baseline methods.

3.1 Introduction

Motivation. With the rise of the big data era an exponential amount of network

data is being generated at an unprecedented rate across many disciplines. One of

the critical challenges before us is the translation of this large-scale network data

into meaningful information. A key task in this translation is the identification of

local communities with respect to a given seed node 1 . In practical terms, the

1we interchangeably refer to local community as a local partition
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information discovered in these local communities can be utilized in a wide range

of high-impact areas—from the micro (protein interaction networks Laura Bennett

(2014) Yong-Yeol Ahn (2010)) to the macro (social Tantipathananandh et al. (2007)

Chen et al. (2009) and transportation networks).

Problem Overview. How can we quickly determine the local graph partition

around a given seed node? This problem is traditionally solved using an algorithm

like Nibble Spielman and Teng (2013), which identifies a small cluster in time pro-

portional to the size of the cluster, or PageRank-Nibble, Andersen et al. (2006) which

improves the running time and approximation ratio of Nibble with a smaller polylog

time complexity. While both of these methods provide powerful techniques in the

analysis of network structure, they fail to take into account the attribute information

contained in many real-world graphs. Other techniques to find improved rank vectors,

such as attributed PageRank Hsu et al. (2017), lack a generalized conductance metric

for measuring cluster ”goodness” containing attribute information. In this paper,

we propose a novel method that combines the network structure and attribute in-

formation contained in graphs—to better identify local partitions using a generalized

conductance metric.

Applications. Local graph partition plays a central role in many application sce-

narios. For example, a common problem in recommender systems is that of social

media networks and determining how a local community will evolve over time. The

proposed LocalForecasting algorithm can be used to determine the evolution of

local communities, which can then assist in user recommendations. Another example

utilizing social media networks is ego-centric network identification, where the goal is

to identify the locally important neighbors relative to a given person. To this end, we

can use our AttriPart algorithm to identify better ego-centric networks using the

graph’s network structure and attribute information. Finally, newly arrived nodes
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(i.e., cold-start nodes) often contain few connections to their surrounding neighbors,

making it difficult to ascertain their grouping to various communities. The proposed

LocalForecasting algorithm mitigates this problem by introducing additional at-

tribute edges (link prediction), which can assist in determining which local partitions

the cold start nodes will belong to in the future.

Contributions. Our primary contributions are three-fold:

• The formulation of a graph model and generalized conductance metric that

incorporates both attribute and network structure edges.

• The design and analysis of local clustering algorithm AttriPart and local

community prediction algorithm LocalForecasting. Both algorithms utilize

the proposed graph model, modified conductance metric and novel subgraph

identification technique.

• The evaluation of the proposed algorithms on three real-world datasets—demonstrating

the ability to rapidly identify denser local partitions compared to traditional

techniques.

Deployment. The local partitioning algorithm AttriPart is currently deployed

to the PathFinder Freitas et al. (2017) web platform (www.path-finder.io), with the

goal of assisting users in mining local network connectivity from large networks. The

design and deployment challenges were wide ranging, including—(i) the integration

of four different programming languages, (ii) obtaining real-time performance with

low cost hardware and (iii) implementation of a visually appealing and easy to use

interface. We note that the AttriPart algorithm, deployed to the web platform,

has performance nearly identical to the results presented in section 3.4.
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Figure 3.1: Close-up of the AttriPart algorithm on the PathFinder web platform.

This paper is organized as follows—Section 2 defines the problem of local par-

titioning in rich graphs; Section 3 introduces our proposed model and algorithms;

Section 4 presents our experimental results on multiple real-world datasets; Section

5 reviews the related literature; and Section 6 concludes the paper.

3.2 Problem Definition

In this paper we consider three graphs—(1) an undirected, unweighted structure

graph G = (V,E), (2) an undirected, weighted attribute graph A = (V,E) and

(3) a combined graph consisting of both G and A that is undirected and weighted

B = (V,E). In each graph, V is the set of vertices, E is the set of edges, n is the

number of vertices and m is the number of edges (i.e. G, H and B contain the same

number of vertices and edges by default). In order to denote the degree centrality we
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say δ(v) is the degree of vertex v. We use uppercase letters to denote matrices (e.g.

G) and lowercase letters to denote vectors (e.g. v).

For the ease of description, we define terms that are interchangeably used through-

out the literature and this paper—(a) we refer to network as a graph, (b) node is

synonymous with vertex, (c) local partition is referred to as a local cluster, (d) seed

node is equivalent to query and start vertex, (e) topological edges of the graph refers

to the network structure of the graph, (f) a rich graph is a graph with attributes on

the nodes and or edges.

Having outlined the notation, we define the problem of local partitioning in rich

graphs as follows:

Problem 1. Local Partitioning in Rich Graphs

Given: (1) an undirected, unweighted graph G = (V,E), (2) a seed node q ∈ V and

(3) attribute information for each node v ∈ V containing a k-dimensional attribute

vector xi—with an attribute matrix X = [x1, x2, ..., xn] ∈ Rk×n representing the

attribute vector for each node v.

Output: a subset of vertices S ⊂ V such that S best represents the local partition

around seed node q in graph B.
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Table 3.1: Symbols and Definition

Symbol Definition

G, A, B network, attribute & combined graphs

n, m number of nodes & edges in graphs G, A, B

me number of edges in B after LocalForecasting

p, mp number of nodes & edges in T

s, q, φo preference vector, seed node & target conductance

W lazy random walk transition matrix

S set of vertices representing local partition

ε, εt rank truncation and iteration thresholds

tm, ns rank vector iterations; number of vertices to sweep

αn, αr AttriPart & LocalProximity teleport values

ts, nw subgraph relevance threshold & number of walks

T ; D, L subgraph of B; walk count dictionary & list

µ(L), σ(L) mean and standard deviation of L

te edge addition threshold

3.3 Methodology

This section first describes the preliminaries for our proposed algorithms, including

the graph model and modified conductance metric. Next, we introduce each proposed

algorithm—(1) LocalProximity, (2) AttriPart and (3) LocalForecasting.

Finally, we provide an analysis of the proposed algorithms in terms of effectiveness

and efficiency.
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Figure 3.2:

Example of the three graph models: (a) graph G is the network structure with nodes

{1, 2, 3, 4} and corresponding attribute set {x1, x2, x3, x4} given as input. (b) Graph

A is the attribute network with the same set of edges as G with each edge (u, v)

assigned a positive similarity weight suv. (c) Graph B is a linear combination of each

respective edge (u, v) from G and A.

3.3.1 Preliminaries

Graph Model. Topological network G represents the network structure of the

graph and is formally defined in Eq. (3.1). Attribute network A represents the at-

tribute structure of the graph and is computed based on the similarity for every edge

(u, v) ∈ E in G. In order to determine the similarity between the two nodes, we use

Jaccard Similarity J(u, v). A is formally defined in Eq. (3.2) where 0.05 is the default

attribute similarity between an edge (u, v) ∈ E in G if J(xu, xv) = 0. In addition,

te is the similarity threshold for the addition of edges not in G where 0 < te ≤ 1.

Combined Network B represents the combined graph of G and A and is formally

defined in Eq. (3.3).

Formally, we define each of the three graph models G, A and B in Eq. (3.1),

Eq. (3.2) and Eq. (3.3). Figure 3.2 presents an illustrative example.
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G(u, v) =


1, if (u, v) ∈ E and u 6=v

0, otherwise

(3.1)

A(u, v) =



J(u,v), if (u, v) ∈ E, u6=v and J(u, v) > 0

0.05, if (u, v) ∈ E, u6=v and J(u, v) = 0

J(u,v), if (u, v) 6∈ E, u6=v and J(u, v) > te

0, otherwise

(3.2)

B(u, v) =


1+A(u,v), if (u, v) ∈ E and (u, v) ∈ A

A(u,v), if (u, v) 6∈ E and (u, v) ∈ A

0, otherwise

(3.3)

Conductance. Conductance is a standard metric for determining how tight knit

a set of vertices are in a graph Kannan et al. (2004). The traditional conductance

metric is defined in Eq. (3.4), where S is the set of vertices representing the local

partition. The lower the conductance value φ(S), where 0 ≤ φ(S) ≤ 1, the more

likely S represents a good partition of the graph.

φ(S) =
cut(S)

min(vol(S), vol(S̄))
(3.4)

Where the cut is Cut(S) = {(u, v) ∈ E|u ∈ S, v /∈ S}, and the volume is vol(S) =∑
v∈S

δ(v).

This definition of conductance will serve as the benchmark to compare the results

of our parallel conductance metric.

Parallel Conductance. We propose a parallel conductance metric which takes into

account both the attribute and topological edges in the graph. Instead of simply

adding the cut of each vertex v ∈ S, we want to determine whether v is more similar
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to the vertices in S or S̄. The new cut and conductance metric is formally defined in

Eq. (3.5) and Eq. (3.6), respectively. The key idea behind the parallel conductance

metric is to determine whether each vertex in S is more similar to S or S̄ using the

additional information provided by the attribute links.

parallel cut(S) =
∑
iεS

∑
j 6εS
B(i, j)∑

jεS

B(i, j)
=
∑
iεS

∑
j 6εS

[
A(i, j) +G(i, j)

]
∑
jεS

[
A(i, j) +G(i, j)

] (3.5)

By definition, B can be split into its representative components, G and A. We

also note a few key properties of the parallel cut metric below:

1. Parallel cut = 1 means that the vertices in S have connections of equal weight-

ing between S and S̄.

2. Parallel cut < 1 means that the vertices in S have only a few strong connections

to S̄.

3. Parallel cut > 1 means that the vertices in S are more strongly connected to

S̄ than S.

Eq. (3.6) uses the cut as defined in Eq. (3.5) and the volume as defined above

with the modification that δ(v) is a sum of it’s components in G and A.

φ(S) =
parallel cut(S)

vol(S)
(3.6)

We note that the parallel conductance metric has a different scale compared to the

traditional conductance metric. For example, a conductance of 0.3 in the traditional

conductance doesn’t have the same meaning as a conductance of 0.3 in the parallel

definition. We also bound the volume of S to vol(S) < 1/2vol(B). This allows us to

reduce the min(vol(S), vol(S̄)) computation to vol(S).
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Figure 3.3: A toy example calculating the parallel cut and conductance with local partition

S containing vertices {1, 2, 3, 4}. Parallel cut(V1) = 1.05/2.1 = 0.5, parallel cut(V2) = 0,

parallel cut(V3) = 1.05/2.2 = 0.477, parallel cut(V4) = 0, parallel cut(Total) = 0.5 + 0.477

= 0.977. Volume(S) = 12. Parallel conductance(S) = 0.977/12 = 0.0814.

3.3.2 Algorithms

We propose three algorithms in this subsection, including (1) LocalProximity

(2) AttriPart and (3) LocalForecasting. First, we introduce the LocalProx-

imity algorithm as a key building block for speeding-up the AttriPart and Local-

Forecasting algorithms by finding a subgraph containing only the nodes and edges

relevant to the given seed node. Based on LocalProximity, we further propose

the AttriPart algorithm to find a local partition around a seed node by minimiz-

ing the parallel conductance metric. Finally, we propose the LocalForecasting

algorithm, which builds upon AttriPart, to predict a local community’s evolution.

LocalProximity. There are two primary purposes for the LocalProximity

algorithm—(i) the requisite computations for the LocalForecasting algorithm
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require a pairwise similarity calculation of all nodes, which is intractable for large

graphs due to the quadratic run time. To make this computation feasible, we use

the LocalProximity algorithm to determine a small subgraph of relevant vertices

around a given seed node q. (ii) We experimentally found that the PageRank vector

utilized in the AttriPart algorithm is significantly faster to compute after running

the proposed LocalProximity algorithm.

Algorithm Details. The goal is to find a subgraph T around seed node q, such

that T contains only nodes and edges likely to be reached in nw trials of random

walk with restart. We base the importance of a vertex v ∈ V on the theory that

random walks can measure the importance of nodes and edges in a graph Dupont

et al. (2017)Newman (2005). This is done by defining node relevance proportional

to the frequency of times a random walk with restart walks on a vertex in nw trials

(nodes walked on more than once in a walk will still count as one). Instead of using

a simple threshold parameter to determine node/edge relevance as in Dupont et al.

(2017), we utilize the mean and standard deviation of the walk distribution in order

for the results to remain insensitive of nw given that nw is sufficiently large. In

conjunction with the mean and standard deviation, we introduce ts as a relevance

threshold parameter to determine the size of the resulting subgraph T . See section

3.3.3 for more details.

Algorithm Description. The LocalProximity algorithm takes a graph B, a seed

node q ∈ B, a teleport value αr, the number of walks to simulate nw, a relevance

threshold ts—and returns a subgraph T containing the relevant vertices in relation

to q. This algorithm can be viewed in three major steps:

1. Compute the walk distribution around seed node q in graph B using random

walk with restart (line 2). We omit the Random Walk algorithm due to space

constraints, however, the technique is described above.
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2. Determine the number of vertices to include in the subgraph T based on the

relevance threshold parameter ts, mean of the walk distribution list µ(L) and

the standard deviation of the walk distribution list σ(L) (lines 4-6).

3. Create a subgraph based on the included vertices (line 8).

Algorithm 1: Local Proximity

Input: Graph B, seed node q, teleport value αr, number of walks to simulate

nw, relevance threshold ts

Result: Subgraph T

1 subgraph nodes = [];

2 D = RandomWalk(q, αr, nw, B);

3 L = D.values;

4 for vertex u in B do

5 if D[u] > µ(L) + σ(L) / ts then

6 subgraph nodes.append(u);

7 T = B.subgraph(subgraph nodes);

8 return T ;

AttriPart. Armed with the LocalProximity algorithm, we further propose

an algorithm AttriPart, which takes into account the network structure and at-

tribute information contained in graph to find denser local partitions than can be

found using the network structure alone. The foundation of this algorithm is based

on Spielman and Teng (2013)Andersen et al. (2006)Zhukov (2015) with subtle modifi-

cations on lines 1, 4 and 9. These modifications incorporate the addition of a combined

graph model, approximate PageRank computation using the LocalProximity algo-

rithm, and the parallel cut and conductance metric. In addition, AttriPart doesn’t
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depend on reaching a target conductance in order to return a local partition—instead

it returns the best local partition found within sweeping ns vertices of the sorted

PageRank vector.

Algorithm Description. Given a graph B, seed node q ∈ V , target conductance

φo, rank truncation threshold ε, the number of iterations to compute the rank vector

tlast, teleport value αn, rank iteration threshold εt and number of nodes to sweep ns—

AttriPart will find a local partition S around q within ns iterations of sweeping.

This algorithm can be viewed in five steps:

1. Set values for ε and tlast as seen in Eq. (3.7) and Eq. (3.9) respectively. We ex-

perimentally set b = 1+log(m)
2

and εt to 0.01. For additional detail on parameters

ε, tlast and b see Spielman and Teng (2013). For all other parameter values see

Section 3.4.

2. Run LocalProximity around seed node q in order to reduce the run time of

the PageRank computations (line 1).

3. Compute the PageRank vector using a lazy random transition with personalized

restart—with preference vector s containing all the probability on seed node q.

At each iteration truncate a vertex’s rank if it’s degree normalized PageRank

score is less than ε (lines 2-7).

4. Divide each vertex in the PageRank vector by its corresponding degree centrality

and order the rank vector in descending order (line 8).

5. Sweep over the PageRank vector for the first ns vertices, returning the best local

partition S found (lines 9-10). The sweep works by taking the re-organized rank

vector and creating a set of vertices S by iterating through each vertex in the

rank vector one at a time, each time adding the next vertex in the rank vector

to S and computing φ(S).

20



ε = 1/(1800(l + 2)tlast2
b) (3.7)

l = dlog2(2m/2)e (3.8)

tlast = (l + 1)d 2

φ2
ln(c1(l + 2)

√
2m/2)e (3.9)

Algorithm 2: AttriPart

Input: Graph B, seed node q, target conductance φo, truncation threshold ε,

iterations tlast, teleport value αn, iteration threshold εt, vertices to

sweep ns

Result: Local partition S

1 T = Local Proximity(B, q, αr, nw, ts);

2 Di,i = δ(vi);

3 W = 1
2
(I +D−1T );

4 for t = 1 to tlast and sum(qt) - sum(qt−1) ¡ εt do

5 qt = (1− α)qt−1W + αs;

6 rt(i) = qt(i) if qt(i)/d(i) > ε, else 0;

7 Order i from large to small based on rt(i)/d(i);

8 Sweep Parallel Conductance φ(S{i = 1..j}) while i < ns;

9 If there is j : φ(Sj) < φo, return S;

LocalForecasting. As a natural application of the AttriPart algorithm, we

introduce a method to predict how local communities will evolve over time. This

method is based on the AttriPart algorithm with two significant modifications—

(i) required use of the LocalProximity algorithm to create a subgraph around the

21



seed node and (ii) the use of the ExpandedNeighborhood algorithm to predict

links between nodes in the subgraph. The idea behind using the ExpandedNeigh-

borhood algorithm is that nodes are often missing many connections they will make

in the future, which in turn affects the grouping of nodes into communities. To aid in

predicting future edge connections we use Jaccard Similarity Liben-Nowell and Klein-

berg (2007) to predict the likelihood of each vertex connecting to the others—with

edges added if the similarity between two nodes is greater than threshold te.

Algorithm Description. Given a graph B, a seed node q ∈ V , a target conductance

φo, a rank truncation threshold ε, the number of iterations to compute the rank

vector tlast, a teleport value αn, rank iteration threshold εt, similarity threshold te

and number of nodes to sweep ns—this algorithm will find a predicted local partition

around q within ns iterations of sweeping. As the LocalForecasting algorithm is

similar to AttriPart, we highlight the three primary steps:

1. Determine the subgraph around a given seed node using the LocalProximity

algorithm (line 1).

2. Determine the pairwise similarity between all nodes in the subgraph using Jac-

card Similarity, adding edges that are above a given similarity threshold (line

2).

3. Run the AttriPart algorithm to find the predicted local partition around the

seed node (line 3).

3.3.3 Analysis

Effectiveness. LocalProximity (Algorithm 1). The objective is to ensure that

all relevant nodes in proximity to seed node q are included. We use the fact that

many real-world graphs follow a scale-free distribution Barabási and Albert (1999)

Faloutsos et al. (1999), with many nodes containing only a few links while a handful
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Algorithm 3: Local Forecasting

Input: Graph B, seed node q, target conductance φo, truncation threshold ε,

iterations tlast, teleport value αn, iteration threshold εt, similarity

threshold te, vertices to sweep ns

Result: Predicted local partition S

1 T = Local Proximity(B, q);

2 T = Expanded Neighborhood(T , te) ;

3 S = AttriPart(T , q, φo, ε, tlast, αn, εt, ns) ;

4 return S ;

Algorithm 4: Expanded Neighborhood

Input: Subgraph T , edge addition threshold te

Result: Subgraph T with predicted edges

1 for u in T do

2 for v in T and v not u do

3 u attr = T [u]; v attr = T [v];

4 similarity score = JaccardSimilarity(u attr, v attr);

5 if similarity score > te and not T [u][v] then

6 T [u][v] = similarity score;

7 return T ;

encompasses the majority. In Figure 3.4, we found that after running nw trials of

random walk with restart, a scale-free like distribution formed—with a large majority

of the nodes containing a small number of ‘hits’, while a few nodes constituted the

bulk.

As the number of random walks nw is increased, the scale-free like distribution is

maintained since each node is proportionally walked with the same distribution. We
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Figure 3.4: Random walk w/ restart—distribution of node walk counts. nw = 10,000, αr =

0.15; dataset: wikipedia, start vertex: ‘ewok’, y-axis: right; dataset: Aminer, start vertex:

364298, y-axis: left. We omit nodes walked zero times in the graph, however, they’re used

in calculating µ(L), σ(L).

therefore need only some minimum value for nw, which we set to 10,000. We use this

skewed scale-free like distribution in combination with Eq. (3.10) below to ensure the

extraction of relevant nodes in relation to a query vertex.

Mathematically we define node relevance based on Eq. (3.10), where D is a dic-

tionary containing the walk count of each vertex and D(v) represents the number of

times vertex v is walked in nw trials of the random walk with restart. L is a list of

each node’s walk count in the graph, µ(L) is the average number of times all of the

nodes in the graph are walked and σ(L) is the standard deviation of the number of

times all of the nodes in the graph are walked. In section 3.4 we discuss values of ts

that have been shown to be empirically effective.

D(v) > µ(L) + σ(L)/ts (3.10)

After determining the relevant nodes we create a subgraph T from a portion of
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the long-tail curve as defined by threshold parameter ts in conjunction with µ(L)

and σ(L). We say that subgraph T contains p � n nodes—with p increasing nearly

independently of the graph size (depending on threshold ts). As seen in Figure 3.4

the number of nodes with r walks converges independent of graph size.

Efficiency. All algorithms use the same data structure for storing the graph in-

formation. If a compressed sparse row (CSR) format is used, the space complexity is

O(2m+n+1). Alternatively, we note that with minor modification to the algorithms

above we can use an adjacency list format with O(n+m) space.

Lemma 3.3.0.1 (Time Complexity). LocalProximity has a time complexity of O(n+

mp +nw) while AttriPart has a time complexity of O(p2 + pmp +n+nw) and Lo-

calForecasting a time complexity of O(p2 + pme + n+ nw).

Proof. LocalProximity: There are three major components to this algorithm: (1)

nw random walks with walk length l for a time complexity of O(nw) (line 2). (2)

Linear iteration through the number of nodes taking O(n) (lines 4-7). (3) Subgraph

T creation based on the number of included vertices p with node set Vt—requiring

iteration through every edge of node v ∈ Vt for mp total edges. Iterating through

every edge is linear in the number of edges for a time complexity of O(mp) (line 8).

This leads to a total time complexity of O(n+mp + nw)

AttriPart: There are six major steps to this algorithm: (1) calling Local-

Proximity which returns a subgraph T containing p nodes and mp edges for a time

complexity of O(n+mp + nw) (line 1). (2) Creating a diagonal degree matrix by it-

erating through each node in T with time complexity O(p) (line 2). (3) Creating the

lazy random walk transition matrix W , which requires O(mp) from multiplying the

corresponding matrix entries (line 3). (4) In lines 4-7 we iterate for tlast iterations,

with each iteration (i) updating the rank vector by multiplying the corresponding
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edges in the transition matrix W , with the rank vector q for a time complexity of

O(mp) and (ii) truncating every vertex with rank qt(i)/d(i) ≤ ε for a time complexity

linear in the number of nodes in the rank vector O(p). (5) Sort the rank vector which

will be upper bounded by O(plogp) (line 8). (6) Compute the parallel conductance,

which takes O(p2 + pmp) time (lines 9-10). Combining each step leads to a total time

complexity of O(p2 + pmp + n+ nw).

LocalForecasting: This algorithm has three major steps: (1) run the Local-

Proximity algorithm, which has a time complexity of O(n+mp +nw). (2) Perform

the ExpandedNeighborhood algorithm, which densifies T by adding predicted

edges for a total of me edges in T . This algorithm has a time complexity of O(p2) due

to the nested for loops. (3) Run the AttriPart algorithm, which has a time com-

plexity of O(p2 + pme + n+ nw) with the modification of mp to me for the additional

edges. This leads to an overall time complexity of O(p2 + pme + n+ nw).

While AttriPart and LocalForecasting both scale quadratically with re-

spect to p, we note that in practice these algorithms are very fast since p� n and p

scales nearly independent of graph size as shown in section 3.3.3.

3.4 Experiments

In this section, we demonstrate the effectiveness and efficiency of the proposed

algorithms on three real-world network datasets of varying scale.

3.4.1 Experiment setup

Datasets. We evaluate the performance of the proposed algorithms on three

datasets—(1) the Aminer co-authorship network Zhang et al. (2017), (2) a Musi-

cian network mined from DBpedia and (3) a subset of Wikipedia entries in DBpedia

containing both abstracts and links. All three networks are undirected with detailed

26



information on each below:

• Aminer. Nodes represents an author, with each author containing a set of topic

keywords, and an edge representing a co-authorship. To form the attribute net-

work, we compute attribute edges based on the similarity between two authors

for every network edge, using Jaccard Similarity on the corresponding authors’s

topic set.

• Musician. Nodes represent a Musician, with each Musician containing a set of

music genres, and an edge representing two Musicians who have played in the

same band. To form the attribute network, we compute attribute edges based

on the similarity between two Musicians for every network edge, using Jaccard

Similarity on the corresponding artist’s music genre set.

• Wikipedia. Nodes represent an entity, place or concept from Wikipedia which

we will jointly refer to as an item. Each item contains a set of defining key

words; with edges representing a link between the two items. The dataset orig-

inates from DBpedia as a directed graph with links between Wikipedia entries.

We modify the graph to be undirected for use with our algorithms—which we

believe to be a reasonable as each edge denotes a relationship between two

items. In addition, this dataset uses only a portion of the Wikipedia entries

containing both abstracts and links to other Wikipedia pages found in DBpe-

dia. To form the attribute network, we compute attribute edges based on the

similarity between two items for every network edge using Jaccard Similarity

on the corresponding item’s key word set.

Metrics. (1) To benchmark the LocalProximity algorithm’s effectiveness and

efficiency, we compare (i) the difference between local partition created with and
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Category Network Nodes Edges

Aminer Co-Author 1,560,640 4,258,946

Musician Co-Musician 6,006 8,690

Wikipedia Link 237,588 1,130,846

Table 3.2: Network Statistics

without the LocalProximity algorithm on AttriPartand (ii) the run time and

difference between the top 20 PageRank vector entries with and without the Local-

Proximity algorithm. (2) To benchmark the AttriPart algorithm’s effectiveness

and efficiency we compare the triangle count, node count, local partition density and

run time to PageRank-Nibble. Normally, PageRank-Nibble does not return a local

partition if the target conductance is not met, however, we modify it to return the

best local partition found—even if the target conductance is not met. This modifica-

tion allows for more comparable results to AttriPart. (3) To provide a baseline for

the LocalForecasting algorithm’s effectiveness, we compare the local partition

results to AttriPart on two graph missing 15% of their edges.

Use-Case. While not covered in this thesis, we note that an interesting extension of

this research would be to create a use-case study comparing various local partitioning

algorithms on networks with ground truth data. This would allow for a more in-depth

study of the true effectiveness of the proposed local partitioning algorithm compared

to baseline local partitioning techniques.

Repeatability. All data and source code used in this research will be made publicly

available. The Aminer co-authorship network can be found on the Aminer website

2 ; the Musician and Wikipedia datasets used in the experiments will be released on

2https://Aminer.org/data
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the author’s website. All algorithms and experiments were conducted in a Windows

environment using Python.

3.4.2 Effectiveness

LocalProximity. In Figure 3.5 parts (a)-(c), we can see that the proposed

LocalProximity algorithm significantly reduces the computational run time, while

maintaining high levels of accuracy across both metrics. Parts (a)-(b) demonstrate

to what extent the accuracy of the results are dependent upon the parameter values.

In particular, a low value of αr (random walk alpha) and a high value of ts (relevance

threshold) are critical to providing high accuracy results.

In Figure 3.5 part (a), we measure accuracy as the number of vertices that dif-

fer between the local partitions w/ and w/o the LocalProximity algorithm on

AttriPart. A small partition difference indicates that the LocalProximity algo-

rithm finds a relevant subgraph around the given seed node and that the full graph

is unnecessary for accurate results. In part (b), we define the accuracy of the results

to be the difference between the set of top 20 entries in the PageRank vectors for

the full graph and subgraph using the LocalProximity algorithm. Overall, the

results from part (b) correlate well to (a)—showing that for low values of αr (random

walk alpha) and high values of ts (relevance threshold), their is negligible difference

between the results computed on the full graph and the subgraph found using the

LocalProximity algorithm.

AttriPart. In Figure 3.7, we see that AttriPart finds significantly denser

local partitions than PageRank-Nibble—with local partition densities approximately

1.6×, 1.3× and 1.1× higher in AttriPart than PageRank-Nibble in the Aminer,

Wikipedia and Musician datasets respectively. Density is measured as 2m
n(n−1) where

m is the number of edges and n is the number of nodes.
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(a) Y-axis represents the difference in vertices between the local partition calculated w/

and w/o the LocalProximity algorithm.

(b) Y-axis represents the # of vertices differing between the top 20 rank vector entries w/

and w/o the LocalProximity algorithm.

Figure 3.5: Each data point averages 10 randomly sampled vertices in both the Aminer and

Musician datasets. Default parameters (unless sweeped across): αn = 0.2, αr = 0.15, φo

= 0.2, ts = 2, nw = 10,000, ns = 200. Parameter ranges: αr, αn and φo [0.1-0.7] in 0.1

intervals; ts [1-5] in 0.5 intervals.
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Figure 3.6: Y-axis represents the difference in run time between the PageRank calculation

w/ and w/o the LocalProximity algorithm. Each data point averages 10 randomly

sampled vertices in both the Aminer and Musician datasets. Default parameters (unless

sweeped across): αn = 0.2, αr = 0.15, φo = 0.2, ts = 2, nw = 10,000, ns = 200. Parameter

ranges: αr, αn and φo [0.1-0.7] in 0.1 intervals; ts [1-5] in 0.5 intervals.

In Figure 3.7, we observe that the triangle count of the AttriPart algorithm is

lower than PageRank-Nibble in the Musician and Aminer datasets. We attribute this

to the fact that AttriPart is finding smaller partitions (as measured by node count)

and, therefore, there are less possible triangles. While no sweeps across algorithm

parameters were performed, we believe that the gathered results provide an effective

baseline for parameter selection. We also note that ideally the we would have ground

truth data for the local partition in each graph, however, in their absence we use the

graph characteristics described in Figure 3.7.

LocalForecasting. In order to measure the effectiveness of the LocalFore-

casting algorithm we setup the following experiment with three local partition cal-

culations: (1) calculate the local partition using AttriPart, (2) calculate the local

partition using AttriPart with 15% of the edges randomly removed from the graph

and (3) calculate the local partition using the LocalForecasting algorithm with
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(a) Scalability: Each data point represents the Aminer dataset in 1/10th intervals, with

each point averaged over 3 randomly sampled vertices. Parameters: αn = 0.2, αr = 0.15,

φo = 0.2, ts = 2, nw = 10,000, ns = 200.

(b)

Figure 3.7: Characteristics: results are averaged over 20 and 100 randomly sampled vertices

in the Aminer/Wikipedia and Musician datasets, respectively. Parameters: αn = 0.2, αr =

0.15, φo = 0.05, ts = 2, nw = 10,000, ns = 200.
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15% of the edges randomly removed from the graph. We treat (1) as the baseline local

community and want to test if (3) finds better local partitions than (2). The idea

behind randomly removing 15% of the edges in the graph is to simulate the evolution

of the graph over time and test if the LocalForecasting algorithm can predict

better local communities in the future. Ideally, we would have ground-truth local

community data for a rich graph with time series snapshots, however, in its absence

we use the above method.

In Figure 3.8, each data point is generated in three steps—(i) taking the difference

between the set of vertices and edges in local partitions (1) and (3), (ii) taking the

difference between the set of vertices and edges in local partitions (1) and (2) and

(iii) by taking the difference between (ii) and (i). Step (i) tells us how far off the

LocalForecasting algorithm is from the baseline, step (ii) tells us how far off the

local partition would be from the baseline if no prediction techniques were used and

step (iii) tells us the difference between the local partitions with and without the

LocalForecasting algorithm (which is what we see graphed in Figure 3.8).

In Figure 3.8, we see that the local partition prediction accuracy, for both the

edges and vertices, is above the baseline calculations in the Aminer dataset for a

majority of edge similarity threshold values (te). The best results were obtained

when te is 0.6, with an average of 1.4 vertices and 2.75 edges predicted over the

baseline using the LocalForecasting algorithm. This number, while relatively

small, is an average of 20 randomly sampled vertices—with one result reaching up

to 14 vertices and 26 edges over baseline. In addition, we can see that the Musician

dataset does not perform as well as the Aminer dataset, with most of the prediction

results performing worse than the baseline (as indicated by the negative difference).

We believe that this result on the Musician dataset is due to the different nature of

each dataset’s network structure—with the Musician dataset being significantly more
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sparse (no giant connected component) than the Aminer dataset.

Figure 3.8: Each data point averages 20 randomly sampled vertices in the Aminer and

Musician datasets. Default parameters (unless sweeped across): αn = 0.2, αr = 0.15, φo =

0.2, ts = 5, te = 0.7, nw = 10,000, ns = 200. Parameter ranges: te [0.1-0.9] in 0.1 intervals,

φo [0.1-0.6] in 0.1 intervals.

3.4.3 Efficiency

For both the proposed and baseline algorithms, the efficiency results represent

only the time taken to run the algorithm (e.g. not including loading data into mem-

ory). LocalProximity. Across a majority of the parameters the run time for the

full graph PageRank computation is approximately 450 seconds longer compared to

computing the PageRank vector based on the LocalProximity sugraph. Attri-

Part. In Figure 3.7, we see that the AttriPart algorithm finds local partitions

43× faster than PageRank-Nibble. LocalForecasting. This algorithm has an

expected run time nearly identical to AttriPart, we therefore refer the reader to

Figure 3.7 for run time results.
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3.5 Use-Cases

We propose five use-cases as a future extension of this research in the multi-

network domain, where we are given two graphs containing both data and knowledge

information. We say that the knowledge layer contains relationships between concepts

and that the data layer contains relationships between people or items. The use cases

are as follows: (1) given a person, we want to provide explainable predictions for

the evolution of the region around this person utilizing both the knowledge and data

information; (2) given a person, we want to find the relevant topics or concepts in

relation to them; (3) given a topic, we want to find the relevant people in relation to

the topic; (4) given a topic and a person, we want to measure the similarity between

the topic and person; and (5) given two or more people/topics, we want to create a

similarity ranking between the topics and users.

3.6 Conclusion

This paper proposes new algorithms for attributed graphs, with the goal of (i)

computing denser local graph partitions and (ii) predicting the evolution of local

communities. We believe that the proposed algorithms will be of particular interest

to data mining researchers given the computational speed-up and enhanced dense

local partition identification. The proposed local partitioning algorithm AttriPart

has already deployed to the web platform PathFinder (www.path-finder.io) Freitas

et al. (2017) and allow users to interactively explore all three datasets presented in

the paper. In addition, the source code and datasets will be made publicly available.
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Chapter 4

RAPID ANALYSIS OF NETWORK CONNECTIVITY

This research focuses on accelerating the computational time of two base net-

work algorithms (k-simple shortest paths and minimum spanning tree for a subset of

nodes)—cornerstones behind a variety of network connectivity mining tasks—with the

goal of rapidly finding network pathways and trees using a set of user-specific query

nodes. To facilitate this process we utilize: (1) multi-threaded algorithm variations,

(2) network re-use for subsequent queries and (3) a novel algorithm, Key Neighboring

Vertices (KNV), to reduce the network search space. The proposed KNV algorithm

serves a dual purpose: (a) to reduce the computation time for algorithmic analysis

and (b) to identify key vertices in the network (context). Empirical results indicate

this combination of techniques significantly improves the baseline performance of both

algorithms. We have also developed a web platform utilizing the proposed network

algorithms to enable researchers and practitioners to both visualize and interact with

their datasets (PathFinder: http://www.path-finder.io).

4.1 Introduction

Motivation. With the advent of the big data era and the emergence of network

science, large-scale networks are appearing across many disciplines, from medicine

and epidemiology to advertising and marketing. As a result, an exponential amount

of network data is being generated at an unprecedented rate. The challenge before

us, given limited computational resources, is to translate this large network data into

meaningful knowledge.

Problem. How can we rapidly explore, analyze and visualize a set of user-specific
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query nodes in relation to a dataset? We envision that tree, pathway and context are

the three key components to answer this question. Formally, given a graph G = (V,E)

and a set of user-specific query nodes Q, we seek to find (1) the relationship between

each query node in Q (i.e. tree detection), (2) a subset of paths R ⊂ G such that R

contains only vertices and edges that provide key path information between different

query nodes in Q (i.e. pathway detection) and (3) a subset of important vertices, C

and edges, S, such that C ⊂ V and S ⊂ E (i.e. context detection).

Contributions. Our main contributions are three-fold: (1) the development of two

multi-threaded algorithms: k-simple shortest paths (KSSP) and minimum spanning

tree for a subset of nodes (Shortest Paths MST); (2) the creation of a novel algorithm,

Key Neighboring Vertices (KNV), for reducing network search space and identifying

key vertices; (3) the development of a web platform, utilizing these algorithms, for

researchers and practitioners to upload their own network data for analysis and visu-

alization.

1. K-Simple Shortest Paths (pathway): Our approach to the k-simple shortest

path algorithm offers three new features: (a) instead of creating a multi-threaded sin-

gle source shortest path algorithm Ruppert (2012)Guerriero and Musmanno (2000)Singh

and Singh (2015), we parallelize each single source shortest path computation required

to find a path in k (for details see section 3.1); (b) we pre-process the network data

to reduce the search space using the KNV algorithm; (c) the generated pathways and

surrounding context nodes can be re-queried to find additional paths or trees.

Shortest Paths MST (tree): Our approach to solving the minimum spanning tree

for a subset of nodes (Shortest Paths MST) is centered around (a) parallelizing the

shortest path computations to run simultaneously; (b) pre-processing the network

data to reduce the search space of the algorithm; (c) re-querying the generated tree

and surrounding context nodes to find additional trees or paths.
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2. Key Neighboring Vertices (context): Our approach is similar to Sulieman et.

al., but with three key differences. (a) Instead of exploring the network based on the

top N vertices with highest degree centrality, we seed the map with a set of user-

specific query nodes; (b) we propose using above average network degree centrality

as the metric for including nearby neighboring vertices for further exploration in the

search list; (c) we allow additional parameters that let the user control the exploration

process.

3. Platform: We have developed PathFinder, a web platform to assist users in

mining network connectivity from large networks. PathFinder begins by taking an

input network uploaded by the user or selection from a pre-loaded dataset. Depending

on the user’s expertise with the program there are two sets of controls: basic and

advanced. The basic controls allow the user to start without an understanding of the

algorithms, while the advanced controls allow the user to fine-tune their queries and

obtain information that may not be available with a basic search. Visualizations are

generated using vis.js and GraphViz. A video demo of the platform is available at:

https://youtu.be/PxQVd-6mKUw.

4.2 Platform Functionality

Each part of Figure 4.1 highlights some of the platforms core functionality. Figure

4.1(1) shows a sample visualization using the pathway detection algorithm on the

DBLP network. Figure 4.1(2) allows the user to enter the algorithm parameters and

select a network for analysis. Figure 4.1(3) allows the user to enter nodes and edges to

be removed from the graph search, select whether or not to re-use the current graph

results for further analysis and change the configuration of network style parameters,

including: node-edge color scheme and node size. Figure 4.1(4) is a zoomed in portion

of Figure 4.1(1). The red nodes represent the start and end query vertices, orange
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Figure 4.1: An illustrative example of our platform to find the key pathways. Start and

end vertices are in red.

for intermediate path vertices, blue for one hop away critical vertices and purple for

two hop away critical vertices. The blue and purple vertices surrounding the the path

vertices are determined by the KNV algorithm.

Engaging the Audience. We expect that our demo will primarily attract two audi-

ences, (1) practitioners who are interested in exploring the connectivity between key

nodes in large networks, and (2) information management and data mining researchers

who develop new algorithms and tools.

4.3 Technical Details

All algorithms perform on an undirected, unweighted, adjacency list graph repre-

sentation, G = (V,E). Nonetheless, we note that the proposed platform is flexible to

admit alternative algorithms and graph types with mild changes.

4.3.1 Pathway Detection

Problem definition. Given two pre-marked vertices, x, y ε V from the graph G =

(V,E), this algorithm will find k-simple shortest paths from x to y.
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Algorithm description. We adopt the k-simple shortest paths threaded and search

reduced algorithm (Algorithm 5) to detect key pathways that connect the query

nodes, which can be viewed in 7 steps:

1. Run the Key Neighboring Vertices (KNV) algorithm to reduce the search space

of the graph using the start and end vertices.

2. Find the first single source shortest path between vertex x and vertex y.

3. Run the KNV algorithm a second time on the original graph with all the vertices

from the shortest path.

4. For each edge in the current shortest path: temporarily remove the given edge

and run a single source shortest path algorithm. Each of the shortest paths run

in parallel.

5. Determine which of these paths produced the subsequent shortest path. Per-

manently delete the edge that formed the shortest path from the adjacency

list.

6. Repeat Steps 4-5 until k shortest paths have been found or there are no more

identifiable paths.

7. Optional: Re-query the generated network for additional paths, paths between

different vertices or for a tree using Shortest Paths MST.

4.3.2 Tree Detection

Problem definition. Given two or more pre-marked vertices, 2...x ε V from the

graph G = (V,E), this algorithm will find a MST that is constructed from a combi-

nation of single source shortest paths.

Algorithm description. We adopt the Shortest Paths Minimum Spanning Tree algo-

rithm (Algorithm 6) to determine the relationship between the user-specified query

nodes. This can be viewed in 4 steps:
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Algorithm 5: Pathway Detection: K-Simple Shortest Paths Threaded and Search

Reduced
Input: Graph A = (V, E); sv, ev ε V

Output: Array of paths: sPaths[]

1 Initialization: sPaths[], pHolder[], eHolder[]; cPath := 0

2 Graph B = Key Neighboring Vertices(A, sv, ev)

3 sPaths[cPath] = Dijkstra(sv, ev, B)

4 cPath++

5 Graph B = Key Neighboring Vertices(A, sPaths)

6 while cPath < numPaths do

7 pIndex := 0

8 for each edge e ε sPaths[cPath-1] do

9 Graph C = B

10 C.removeEdge(e)

11 eHolder[pIndex] = e

12 pHolder[pIndex] = new thread(Dijkstra(sv, ev, C))

13 pIndex++

14 shortestPaths[cPath] = pHolder.getMinPath()

15 B.removeEdge(eHolder[cPath])

16 cPath++

1. Each pre-marked node, v, will run a single source shortest path algorithm

against every other pre-marked vertex. The single source shortest path al-

gorithms run in parallel.

2. Sort the resulting paths in ascending order of path length.

3. Run Kruskal’s algorithm to determine which of these shortest paths form the
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MST.

4. Optional: Re-query the generated network with different vertices or find paths

using the pathway detection algorithm.

Algorithm 6: Tree Detection: Shortest Paths MST

Input: Graph A = (V, E); Array of integers: vertices[]

Output: Array of paths: sPaths[]

1 Initialization: struct PathInfo { Vertex v1, v2 }, PathInfo paths[], Two

integers: pathCount, pathsFound := 0

2 for each unique pair of vertices p1, p2 ε vertices do

3 paths[pathCount].v1 = p1, paths[pathCount].v2 = p2

4 pathCount++

5 Graph B = Key Neighboring Vertices(A, vertices)

6 for i := 0 to pathCount do

7 sPaths[pathsFound] = new thread(Dijkstra(B, paths[i]))

8 pathsFound++

9 Sort Ascending Order(sPaths)

10 Kruskal’s Algorithm(sPaths)

4.3.3 Context & Speed-up

For both tree and pathway detection, we propose an efficient algorithm to detect

key neighboring vertices to reduce the search space using a combination of three

techniques to identify critical nodes: (1) vertex centrality, (2) edge connection to a

pre-marked node and (3) breadth first search. This allows us to create a reduced

graph R = (V,E), that is a subset of G,R ⊂ G. Through this process we implicitly

assume that vertices with high centrality are key hubs in the graph and are therefore
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important ‘players’ in the network.

The proposed key neighboring vertices algorithm can be viewed in 4 steps:

1. Determine if the current vertex has an edge connection to one of the ‘key’

vertices and has above average vertex centrality. If both conditions are met,

place the current vertex into a bin of that key vertex.

2. Sort each bin in descending order of vertex centrality.

3. From each bin, take the top ‘x’ neighboring nodes as important vertices at that

depth level and add them to the reduced adjacency list.

4. From each bin, a percentage of the top ‘x’ nodes will become ‘key’ vertices and

recursively undergo the process until the specified depth level is reached.
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Algorithm 7: Context & Speed-up: Key Neighboring Vertices

Input: Graph A = (V, E); Array of ints: vertices[]; Six ints: cDepth, depth,

avgCentrality, numVertex, numVerticesNextIter, numVerticesCritical

Output: Graph R = (V, E)

1 Initialization: bins[][]

2 for i := 0 to A.size do

3 if A[i].centrality > avgCentrality then

4 for k := 0 to vertices.size do

5 if vertices[k] ∩ A[i] then

6 bins[k] += i

7 for each array, a, in bins do

8 Sort Descending Order Vertex Centrality(a);

9 for i := 0 to vertices.size do

10 for k := 0 to bins[i].size and k ¡ numVertex do

11 if !vertices[i] ∩ R[bins[i].at(k)] then

12 R.addEdge(vertices[i], bins[i].at(k))

13 if cDepth < depth then

14 numVertex = numVerticesNextIter

15 vertices = new vertices[]

16 cDepth++

17 for each array, a, in bins do

18 for i := 0 to a.size and i < numVerticesCritical do

19 vertices.insert(a[i]])

20 key Neighboring Vertices(vertices, numVertex, cDepth)
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4.3.4 Empirical Evaluation

We used the DBLP co-authorship and the LiveJournal social network from the

Stanford SNAP network to gather empirical data on the platform. The two measures

we aim to quantify are speed and accuracy. Since the Shortest Paths MST and K-

Simple Shortest Paths algorithm utilize the same search space reduction algorithm

and multithreading techniques, we use the KSSP algorithm to represent the Shortest

Paths MST in terms of accuracy and run time. All data was collected locally and

does not account for any additional run time caused by using the web-platform.

To compare the accuracy and run time, we ran three variations of the K-Simple

Shortest Path algorithm (KSSP). The first variation (v.1) contained only the core

KSSP algorithm with no search space reduction or multithreading. The second varia-

tion (v.2) ran the KSSP algorithm with multithreading (KSSPT). The third variation

(v.3) ran the KSSP algorithm with multithreading and the search space reduction al-

gorithm (KSSPR). The run time and accuracy of the three KSSP variations can be

seen in Figure 4.2 and Figure 4.3-4.4 respectively. It should be noted that (v.1) and

(v.2) of the KSSP algorithm will always find the shortest paths available, while the

same guarantee cannot be extended to (v.3). The reasoning behind the possible sub-

optimal path(s) for (v.3) is due to the nature of the search space reduction algorithm

applied to the graph. The KNV algorithm uses a tradeoff between accuracy and run

time, which can be varied depending on the parameters. In trials for Figure 4.2 we

applied parameters to the KNV algorithm that retained accuracy at the cost of speed.

However, even with this additional ‘cost’, trial one results show (v.3) over 2.5x faster

than (v.1) and 1.7x faster than (v.2) with no loss of accuracy with respect to the full

network (last data point). It can be seen in Figure 4.4 that the run time and path

length for the variations is dependent upon the start and end vertices.
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Figure 4.2: Start Vertex: 61, End Vertex: 70591, # of paths: 6. No data for KSSPR on

first two data points due to selected KNV parameters.

Figure 4.3: Data points represent 20%-100% of the Live-Journal network in 1/5th intervals.

KSSPR: Start Vertex: 35521, End Vertex: 286345, # of paths: 8. MST Shortest Paths:

Vertices: 0, 58, 9558, 34343.

In order to better access the abilities of the platform we ran both the KSSPR

and Shortest Paths MST algorithms on the LiveJournal network. To put it in per-

spective, the LiveJournal network has approximately 38.5 million edges and vertices
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Figure 4.4: Each data point represents # of paths found: 2-14 in intervals of 4. Trial 1:

Start Vertex: 35521, End Vertex: 286345. Trial 2: Start Vertex: 9790, End Vertex: 26073.

compared to the DBLP network of 1.3 million. In figure 4.3, the labels KSSPM and

MSTM represent re-query results compared to Algorithm 5 and 6 with no re-query.

Comparing the full network (5th interval) run time for KSSPR vs KSSPM we see an

5.3x speed-up and a 5.6x speed-up for the MSTM vs MST. It should be noted that

(a) parameters were held constant when re-querying the network and that only infor-

mation generated from the previous run is analyzed when re-querying and (b) shorter

paths can be found when re-querying the graph since it’s saved based on visualization

parameters not search space reduction.

4.4 Conclusions

The goal of this work is to rapidly analyze network connectivity. We believe

the computational speedup obtained will be of interest to information management

and data mining researchers. In addition, the web platform PathFinder allows users

to quickly and intuitively determine network connectivity between a set of user-

specific query nodes. An operational prototype is online: http://path-finder.io

and source code will be made publicly available.
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Chapter 5

CONCLUSION AND FUTURE WORK

This thesis proposes three algorithms for analyzing the network connectivity of large

scale graphs—with the goal of being able to analyze the connectivity between any

number of seed nodes. In addition to addressing fundamental research questions re-

garding the connectivity analysis of marked nodes in graphs, we apply this research

to address the problem of local community evolution and recommender systems in

graphs. We believe that the proposed algorithms will be of particular interest to

data mining researchers and practitioners given both the computational speed-up

compared to traditional methods and their practical applications. All three algo-

rithms are deployed to the web platform PathFinder (www.path-finder.io) Freitas

et al. (2017) and allow users to interactively explore all the datasets presented. In

addition, the source code and datasets will be made publicly available on the author’s

website.

We believe that there are many interesting extensions of this research in the areas

of (1) multi-networks, (2) attributed algorithms for analyzing graphs containing two

or more marked nodes, (3) exploration of additional link prediction techniques, (4)

using the network structure of the graph itself to generate additonal attributes and

(5) support for heterogeneous edges in the network analysis. Each of the aforemen-

tioned research areas has the potential to provide significant advances in the current

methodology used to analyze network connectivity. In particular, we believe that

extending this work to multi-networks would provide many interesting use cases for

local community evolution and recommender systems.
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