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Abstract

The natural world often follows a long-tailed data distribution where only a few
classes account for most of the examples. This long-tail causes classifiers to overfit
to the majority class. To mitigate this, prior solutions commonly adopt class
rebalancing strategies such as data resampling and loss reshaping. However, by
treating each example within a class equally, these methods fail to account for
the important notion of example hardness, i.e., within each class some examples
are easier to classify than others. To incorporate this notion of hardness into the
learning process, we propose the EarLy-exiting Framework (ELF). During training,
ELF learns to early-exit easy examples through auxiliary branches attached to a
backbone network. This offers a dual benefit—(1) the neural network increasingly
focuses on hard examples, since they contribute more to the overall network loss;
and (2) it frees up additional model capacity to distinguish difficult examples.
Experimental results on two large-scale datasets, ImageNet LT and iNaturalist’18,
demonstrate that ELF can improve state-of-the-art accuracy by more than 3%. This
comes with the additional benefit of reducing up to 20% of inference time FLOPS.
ELF is complementary to prior work and can naturally integrate with a variety of
existing methods to tackle the challenge of long-tailed distributions.

1 Introduction

Real data often follows a long-tailed distribution where the majority of examples are from only a
few classes. On datasets following this distribution, neural networks often favor the majority class,
leading to poor generalization performance on rare classes. This imbalance problem has traditionally
been solved by resampling the data (undersampling, oversampling) [1, 2, 3, 4, 5], or reshaping the
loss function (loss reweighting, regularization) [6, 7]. However, these existing approaches focus on
class size to address the challenge of data imbalance, without taking into account the “hardness”
of each example within a class. Intuitively, there might be easy examples in the minority classes
that get incorrectly up-weighted, or difficult examples in the majority classes that get erroneously
down-weighted. We show that by incorporating this notion of example hardness during training our
method can (correctly) increase the loss contribution of hard examples across all classes.

We propose the EarLy-exiting Framework (ELF) (Figure 1) to incorporate this notion of example
hardness during training. ELF is premised around the idea of learning to exit “easy” examples earlier
in the network and “harder” examples towards the end. To achieve this, ELF attaches auxiliary
classifier branches to a backbone network which we refer to as early-exits. At each early-exit, the
neural network tries to correctly predict the input with high confidence. If the prediction is incorrect
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Figure 1: Our EarLy-exiting Framework (ELF) augments a backbone network with auxiliary classifier
branches. During training, ELF aims to confidently and correctly classify examples at the earliest
possible exit branch. Harder examples exit later in the network, accumulating a higher overall loss.

or the confidence is not high enough (typical for difficult inputs), the example incurs a loss and
proceeds to the next exit. Our proposed early-exiting during training has several advantages:

1. Shifting model focus towards harder examples by increasing the average loss contribution of
difficult examples compared to easier ones.

2. Freeing model capacity to focus on harder examples by exiting easier ones early in the network.
3. Computational savings during inference by reducing the average FLOPS required per image.
4. Enabling on-the-fly model selection for variable compute budget.

The concept of early-exiting has traditionally been used during inference to reduce the number of
floating-point operations (FLOPS) and save energy [8, 9]. In contrast, ELF uses early exiting during
training to learn the concept of example hardness which helps with the problem of class imbalance.

Contributions. Our contributions are four-fold: (1) we identify the key concept of example hardness
to help improve generalization performance under long-tailed data distributions; (2) we propose ELF,
a generic framework that complements existing research by incorporating the notion of example
hardness during training; (3) we demonstrate that ELF can generate a family of models to enable
on-the-fly model selection for variable computate budgets; (4) we perform extensive evaluation
on large-scale imbalanced datasets ImageNet LT and iNaturalist’18, improving the state-of-the-art
imbalanced classification accuracy by more than 3%, and reducing FLOPS by up to 20%.

2 Related Research

Recent research has increasingly shifted focus from classification on artificially balanced datasets [10,
11] to classification under a long-tail class distribution [12, 13]. We discuss closely related research
from the areas of long-tailed classification and early-exiting.

Long-tailed classification. Prior work in this area can be categorized along the following three
direction—(1) data resampling, (2) loss reshaping, and (3) transfer and meta learning.

Data resampling approaches class imbalance by either repeating examples for the rare class (oversam-
pling) [14, 4, 15, 5] or discarding existing examples from the majority class (undersampling) [14, 16].
The distinguishing factor among these methods lies in the criteria used for under(over)sampling.
For example, SMOTE [4] oversamples the minority class through linear interpolation, whereas [16]
undersamples by clustering the majority class examples and replacing them with a few anchor points.
However, oversampling generally creates redundancy and risks overfitting to rare classes. On the
other hand, undersampling is susceptible to losing information from the majority classes [17].

Loss reshaping tackles class imbalance by either reweighting example loss, or through class dependent
regularization. Reweighting based approaches assign a larger weight to rare class examples and a
smaller weight to the majority ones [6, 18, 19, 20, 21, 22]. On the other hand, regularization methods
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tackle class imbalance by establishing margins depending upon the class size [23, 24, 25]. Recently,
[7] proposed a loss reshaping method (LDAM) to learn larger margins around rare classes. Among
loss reshaping methods, the closest to ELF is the Focal loss [26], which incorporates a notion of
input-hardness by reweighting an example’s loss in proportion to its prediction confidence. However,
in practice Focal loss does not generalize well in the long-tailed setting. ELF complements these
existing loss reshaping methods, further improving accuracy under class imbalance.

Transfer and meta learning based approaches aims to transfer knowledge from the majority classes
to rare ones by transfer learning, multi task learning or learning to learn [12, 27, 28]. However, it is
observed that these approaches are generally more computationally expensive than loss reshaping
methods [7], including our proposed method ELF.

Early exiting in neural networks. Research in this area focuses on reducing computation during
inference by dynamically routing examples through a network based on their hardness [8, 29, 30,
31, 32]. The core intuition behind these methods is to reduce the computation during inference by
routing easier examples through early exits. Different papers define the notion of hardness differently.
For example, [8] defines hardness using the entropy of the prediction vector so that easier examples
with low entropy predictions exit earlier. On the other hand [29, 30, 32] defines hardness based on
prediction confidence. Thus, (easier) examples with high prediction confidence exit earlier. We
note that, these methods focus on early exiting only during inference. In contrast, to the best of our
knowledge ELF is the first work that employs early exiting during training to learn the notion of
input-hardness. Our extensive experiments suggest this new training approach significantly boosts
classification accuracy in the long-tailed setting.

3 ELF: Learning Input-Hardness For Long Tailed Classification

In Section 3.1 we begin by providing some intuition behind ELF; then in Section 3.2 and Section 3.3
we present the technical details of ELF during training and inference, respectively.

3.1 Input-Hardness Intuition

We hypothesize that within both the majority and minority classes some examples are easier than
others. Consequently, not every example in the minority class needs to be equally upweighted; and
not every example in the majority class needs to be equally downweighted. In order to verify our
intuition, we determine what proportion of the rare classes get a high confidence prediction (≥ 0.9)
and what proportion of the majority classes get a low confidence prediction (≤0.1). Figure 2 plots
the prediction confidence versus the proportion of examples (in the class) obtaining that confidence
from the CIFAR-10 LT dataset.

EasierHarder

Pr
op
or
tio
n
of
ex
am
pl
es

Model confidence
0
0

0.2

.05

.10

.15

.20

0.4 0.6 0.8 1

Minority
Class

Majority
Class

Figure 2: Proportion of examples
in class vs. prediction confidence.

As expected, many examples from the minority class are classi-
fied with low confidence while many examples from the major-
ity class are predicted with near certainty. However, confirming
our hypothesis, a considerable proportion of the minority class
examples obtain a high confidence prediction and vice versa.
It is precisely this subset of examples—low confidence major-
ity and high confidence minority—that ELF impacts the most.
In particular, ELF increases the loss contribution of low confi-
dence majority while retaining the original loss contribution for
high confidence minority. This enables a fine-grained, hardness
aware approach to loss reweighitng.

Notation. We denote an input example asXXXi with corresponding label yi that come from a dataset
D = {(XXX1, y1), ..., (XXXn, yn)}. The number of training examples in class j ∈ C are denoted by nj ,
and the total number of training examples is n =

∑c
j=1 nj . Without loss of generality, we sort the

classes in descending order of cardinality so that n1 ≥ ... ≥ nc, where n1 � nc since we operate in
the long-tailed setting. Our goal is to learn a neural network f : XXX → zzz that maps an input space
XXX to a vector of class prediction scores zzz = [z1, ..., zc]

>, where zi ∈ [0, 1] . The neural network is
parametrized by weights θθθk up to the kth exit. Thus the prediction for input XXXi at the kth exit is
zzz
(k)
i = f(XXXi;θθθ

k) where zzz(k)i is the prediction confidence over c classes. The confidence for the jth
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class is obtained through indexing as zzz(k)i [j]. Throughout the paper, we use capital bold letters for
matrices (e.g.,AAA) and lower-case bold letters for vectors (e.g., aaa).

3.2 Early-Exiting During Training

We present the idea of training time early exiting that lies at the core of ELF. As shown in Figure 1,
ELF augments a backbone neural network withK auxiliary classifier branches1. During training, each
input (XXXi, yi) ∈ D propagates through all auxiliary exits sequentially until it satisfies the following
exit criterion—an example exits only when it is predicted correctly and with a high confidence. More
formally, the exit criterion g(k)i for inputXXXi at exit k is

g
(k)
i =

{
1, if argmax(zzz

(k)
i ) = yi and zzz(k)i [yi] > t(k)

0, otherwise
(1)

Here t(k) is the training time threshold at exit k. For simplicity, we chose the same value of t(k) for
all exits. By construction, our exit-criterion filters out easy examples early on thereby freeing model
capacity for harder examples. Conversely, the harder examples do not satisfy the exit criterion and
accumulate additional loss at each exit. Thus, the overall loss contributed by inputXXXi is

LELF(XXXi, yi) =
∑

k∈[1,...,k(e)i ]

L(k)
(
zzz
(k)
i , yi

)
, where k(e)i = argmin

j∈{1,2,...,K}

(
g
(j)
i > 0

)
(2)

Here K is the total number of exits, and k(e)i denotes the first exit where example XXXi exits by
satisfying the exit criterion in Equation (1). In other words, the ELF framework aggregates loss from
each auxiliary branch until the example exits. In contrast, prior work [8, 29] do not perform train
time early exiting and aggregates loss from every exit. We believe that by allowing easy examples
to exit during training, we can shift the model’s attention to harder examples. We believe that this
difference—training time early-exiting—is essential for increasing the loss contribution of hard
examples.

It is important to note that the ELF loss in Equation (2) is agnostic to the exact instantiation of L(k) at
exit k. In paricular, L(k) can be replaced by any loss function useful for class imbalance, including:
weighted cross-entropy [6], Focal [26], LDAM [7] or any combination thereof. In practice, we
observe consistent improvements with both weighted cross entropy and the recently proposed LDAM
loss. When using class weighted cross-entropy at each exit, ELF loss is described as follows

LCEELF(XXXi, yi) =
∑

k∈[1,...,k(e)i ]

wwwyi log

(
exp(zzz

(k)
i [yi])∑C

j=1 exp(zzz
(k)
i [j])

)
(3)

where wwwyi refers to the class specific weight. Prior work has proposed various strategies to set
class weightwwwyi based on inverse class frequency [22, 19], inverse square root frequency [33, 34]
and effective weighting [6]. We leverage the weighting strategy from [6] that sets wwwc = 1−β

1−βnc ,
where nc is the number of samples in class c and β is a hyperparameter with typical values between
{0.999, 0.9999}. When using LDAM [7] at each exit, the ELF loss can be described as follows

LLDAMELF (XXXi, yi) =
∑

k∈[1,...,k(e)i ]

wwwyi log

(
exp(zzz

(k)
i [yi]−4yi)

exp(zzz
(k)
i [yi]−4yi) +

∑
j 6=yi exp(zzz

(k)
i [j])

)

and4yi =
C

nyi

(4)

1we use the terms auxiliary branches and exits interchangeably
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where 4yi is the per class margin that ensures rare classes get a larger margin. It is determined
through a hyperparameter C and the number of examples nyi in class yi. We select C such that the
largest margin for any class is capped at 0.5 [7].

A desirable outcome of training time early-exiting is that harder examples contribute a higher average
loss than easier examples. Formally, we define this through the increasing loss property:

Property 1 (Increasing Loss Property) If Dk denotes the set of examples exiting at exit k then
E(XXXi,yi)∈D1

[LELF(XXXi, yi)] < E(XXXi,yi)∈D2
[LELF(XXXi, yi)] < ... < E(XXXi,yi)∈Dk

[LELF(XXXi, yi)].

Figure 3: Average per sample
loss for images exiting at dif-
ferent exits on three datasets.
The increasing trend validates
Property 1.

This property enables the neural network to focus on harder examples
which contribute a higher expected loss. In Figure 3, we plot the
average training loss contributed by examples exiting at different
auxillary branches. The increasing trend of average loss across exits
validates the increasing loss property.

3.3 Early-Exiting During Inference

Training with ELF loss enables a neural network to learn a notion
of input-hardness. During inference, this can be leveraged to early-
exit examples from both the minority and majority classes based on
hardness. Formally, the inference time early-exit criterion h(k)i (for
an inputXXXi) at the kth exit is a relaxed version of Equation (1) and
defined below:

h
(k)
i =

{
1, if argmax(zzz

(k)
i ) > s(k)

0, otherwise
(5)

Here zzz(k)i is the prediction vector for the inputXXXi obtained at exit k, and s(k) is the inference time
threshold, which for simplicity we set to be the same across all exits. Our inference time exit criterion
in Equation (5) exits examples based on prediction confidence which is in line with prior work [9, 35].
Using this criterion, we obtain the prediction vector zzzi for inputXXXi as

zzzi = zzz
(k

(e)
i )

i , where k(e)i = argmin
j∈{1,...,K}

(
h
(j)
i > 0

)
(6)

Here k(e)i denotes the first exit where the inference time exit-criterion of Equation (5) holds. We note
that the prediction vector zzzi is determined by both the inputXXXi and the inference exit threshold s(k).
Furthermore, reducing s(k) causes more examples to early exit, which in turn leads to a reduction in
FLOPS. Thus, given a single model trained using ELF (Equation (2)), varying s(k) offers a way to
dynamically generate a family of models with different compute budgets.

4 Experiments

In Section 4.1, we begin by discussing the experimental setup including: (i) evaluated datasets, (ii)
model and training configuations, and (iii) loss function setup. Next, in Section 4.2 we extensively
analyze ELF’s long-tailed performance and disect its ability to improve upon the state-of-the-art.

4.1 Experimental Setup

Datasets. We conduct our evaluation on four long-tailed datasets: CIFAR-10 LT, CIFAR-100 LT [6],
ImageNet LT [12] and iNaturalist’18 [36]. For the first three datasets, the training split is obtained by
subsampling from their balanced versions: CIFAR-10 [37], CIFAR-100 [37] and Imagenet 2012 [38].
In case of the CIFAR LT datasets, we consider three levels of imbalance, 10×, 50× and 100×,
which is defined as the ratio between the number of samples in the largest and the smallest classes.
The ImageNet LT training split consists of 115.8k images from 1,000 classes with largest and
smallest classes containing 1,280 and 5 images respectively. The iNaturalist’18 dataset is a naturally
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Figure 4: Training distribution for each dataset. On CIFAR-10 and CIFAR-100 we evaluate 3 levels of
data imbalance: 10x, 50x and 100x. ImageNet LT and iNaturalist’18 have imbalance ratios of 256×
and 500×, respectively. For long-tailed datasets, a majority of classes only have a few examples.

imbalanced dataset containing 437,513 training images from 8,142 categories with a test set of 24,426
images. Figure 4 highlights the training data distribution for all four datasets. We note that for each
dataset, the validation and test sets are balanced across classes and thus top-1 accuracy serves as a
common metric of comparison. See the Appendix for additional details on dataset construction.

Backbone models & training configurations. We evaluate several models from the ResNet and
DenseNet families. To obtain the ELF models, we attach auxiliary classifier branches before each
residual/dense block (see Appendix for details). On CIFAR datasets, we train all ResNet-32 models
for 200 epochs using SGD with an initial learning rate of 0.1 decreased by 0.01 at epochs 160 and
180 [7, 6]. The weight decay is 2× 10−4. On ImageNet LT and iNaturalist’18 we train all ResNet-50
and DenseNet-169 models for 100 epochs using SGD with an initial learning rate of 0.1 decreased by
0.1 at epochs 60 and 80. The weight decay is 2× 10−4. All models use a linear warmup schedule for
the first 5 epochs to avoid initial overfitting in the imbalanced setting [6, 7].

Implementation. ELF is constructed from three key components—(1) a class reweighting strategy,
(2) an exit loss function and (3) a reweighting schedule. For class reweighting, we weight each
example of class c according to it’s effective number 1−β

1−βnc , where nc is the number of images
in class c [6]. For the exit loss, we consider two variations with ELF—at each exit we use either
cross entropy loss (CE) or label distribution aware margin loss (LDAM) [7]. These are referred
to as ELF(CE) and ELF(LDAM). Finally, for the reweighting schedule we use the per-dataset delayed
reweighting (DRW) scheme introduced in [7]. All experiments are conducted in PyTorch 1.0 using
an Nvidia DGX-1 containing eight V100 GPUs and 512GB of RAM.

For ELF, we set the training and exit thresholds t(k), s(k) based on the exit loss type. ELF(CE) uniformly
sets t(k) = 0.9 for all exits, while ELF(LDAM) sets t(k) = 2/|c|, where |c| is the number of classes in
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Figure 5: By varying the inference threshold s(k), ELF enables on-the-fly model selection based on
the available compute budget (red, blue curves). Each point depicts a ResNet-50 or DenseNet-169
model trained on ImageNet LT for 100 epochs. Observe that the models generated through ELF
achieve more than 3% accuracy gains over any other method while using similar or fewer FLOPS.
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the dataset. The inference exit threshold s(k) is identified through a line search. On large datasets,
we observe that ELF(LDAM) takes more epochs to converge, therefore we provide results for both 100
and 200 epochs. To measure the performance of ELF, we compare against three strong baselines: CE
[6], Focal [26] and LDAM [7], each reusing the same class reweighting and delayed reweighting
schedule discussed above. For Focal loss we set γ = 0.5 [26], and for LDAM we set C such that the
maximum margin is 0.5 [7]. See Appendix for additional implementation details.

4.2 Evalution on Long-Tailed Classification.

We begin by highlighting ELF’s ability to train once and generate a family of models. Next, we
discuss and analyze the performance of ELF on the task of long-tailed classification.

Generating a family of models along the Accuracy-FLOP curve. In Figure 5 we observe the
Accuracy-FLOP trade-off for ELF models trained on ImageNet LT. For ELF, the models lie along a
curve that offers a favorable accuracy-efficiency tradeoff. The models on this curve are obtained by
training once using a fixed training threshold t(k) while linearly varying the inference threshold s(k).
This leads to a family of ELF models that enables on-the-fly model selection based on a compute
budget. We note that models trained without ELF stack vertically since they consume the same
number of inference FLOPS.

Evaluating classification accuracy. In Table 1 All column, we compare the top-1 accuracy of
ELF to each baseline configuration on ImageNet LT and iNaturalist’18 datasets. Table 2 presents
similar analysis on CIFAR-10/100 LT. In both tables we observe that ELF consistently improves
the state-of-the-art accuracy. Moreover the margin of improvement is higher for increasing levels
of imbalance (see Table 2). One interesting insight is that ELF improves performance independant
of loss type at each exit. Specifically, we see consistent improvements while going from CE [6] to
ELF(CE) and from LDAM [7] to ELF(LDAM).

Dissecting the accuracy improvement. To dissect the accuracy of each method, we break down the
combined test set into three sets of classes—Many, Medium and Few. These splits refer to classes
containing more than 100 examples as Many, classes with 20~100 examples as Medium and classes
with less than 20 examples as Few [2]. From Table 1 we observe that ELF(LDAM) comprehensively
outperforms prior methods on all three splits. Interestingly, we observe that traditional class imbalance
techniques sacrifice accuracy on the majority class in order to improve the medium and few classes.
In contrast, ELF maintains or improves accuracy across all three class splits.

To ascertain whether the accuracy gains are due to the extra model capacity introduced by exit
branches, we calculate the total FLOPS consumed by each model on the test set. The relative FLOPS
savings with respect to the baseline model (CE) are presented in parenthesis in Tables 1 and 2. ELF

Imagenet-LT iNaturalist ’18

Many Med Few All Many Med Few All
CE 63.8 38.5 13.6 44.6 (0%) 72.7 63.8 58.7 62.7 (0%)

BBN† [1] - - - - - - - 69.6 (+100%)

CRT† [2] 58.8 44.0 26.1 47.3 (0%) 69.0 66.0 63.2 65.2 (0%)

LWS† [2] 57.1 45.2 29.3 47.7 (0%) 65.0 66.3 65.5 65.9 (0%)

τ -norm† [2] 56.6 44.2 27.4 46.7 (0%) 65.6 65.3 65.9 65.6 (0%)

CE+DRW [6] 60.3 45.2 27.0 48.5 (0%) 67.1 66.4 65.6 66.1 (0%)

Focal+DRW [26] 59.5 44.6 27.0 47.9 (0%) 66.1 66.0 64.3 65.4 (0%)

LDAM+DRW [7] 61.1 44.7 28.0 48.8 (0%) 70.0 67.4 66.1 67.1 (0%)

ELF(CE) + DRW (100 epochs) 60.7 45.5 27.7 48.9 (-20.7%) 67.4 66.3 65.1 66.0 (-13.5%)

ELF(LDAM) + DRW (100 epochs) 64.0 46.8 27.7 50.8 (-7.4%) 72.3 68.8 65.6 67.9 (-9.0%)

ELF(LDAM)+ DRW (200 epochs) 64.3 47.9 31.4 52.0 (-10.0%) 72.7 70.4 68.3 69.8 (-12.6%)

Table 1: Top-1 accuracy for ResNet-50 trained on Imagenet LT and iNaturalist’18 datasets. The
overall accuracy (All column) is decomposed into three splits corresponding to many, medium and
few shot settings. Numbers in parenthesis indicate the FLOPS expended by each method relative
to the baseline model CE (i.e., more negative means more savings, thus better). ELF consistently
improves accuracy while expending fewer FLOPS. †Original results from the referenced paper.
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CIFAR-10 Long Tailed CIFAR-100 Long Tailed

Method 100 50 10 100 50 10

CE 70.4 (0%) 74.8 (0%) 16.4 (0%) 28.3 (0%) 43.9 (0%) 55.7 (0%)

BBN† [1] 79.8 (+100%) 82.2 (+100%) 88.3 (+100%) 42.5 (+100%) 47.0 (+100%) 59.1 (+100%)

Focal† [26] 70.4 (0%) 76.7 (0%) 86.7 (0%) 28.4 (0%) 44.3 (0%) 55.8 (0%)

Mixup† [39] 73.1 (0%) 77.8 (0%) 87.1 (0%) 39.5 (0%) 45.0 (0%) 58.0 (0%)

Manifold Mixup† [40] 73.0 (0%) 78.0 (0%) 87.0 (0%) 38.3 (0%) 43.1 (0%) 56.5(0%)

CE+DRW [6] 76.3 (0%) 80.0 (0%) 87.6 (0%) 41.4 (0%) 46.0 (0%) 58.3 (0%)

Focal+DRW [26] 74.6 (0%) 79.4 (0%) 87.3 (0%) 39.4 (0%) 45.3 (0%) 57.5 (0%)

LDAM+DRW [7] 77.0 (0%) 81.4 (0%) 87.6 (0%) 42.0 (0%) 46.6 (0%) 58.7 (0%)

ELF(CE)+DRW 76.8 (-31.9%) 80.8 (-28.8%) 87.6 (-26.4%) 42.5 (-11.6%) 47.1 (-11.5%) 58.7 (-9.8%)

ELF(LDAM)+DRW 78.1 (-15.1%) 82.4 (-21.4%) 88.0 (-19.6%) 43.1 (-0.01%) 47.5 (-2.39%) 58.9 (-1.9%)

Table 2: Top-1 accuracy for ResNet-32 models trained on long tailed CIFAR-10 and CIFAR-100
datasets. Numbers in parentheses indicate the FLOPS expended relative to the baseline model CE
(i.e., more negative means more savings, thus better). Notice that BBN outperforms ELF in some
scenarios. This is not surprising since it uses double the number of FLOPS compared to all other
methods. †These results are referenced from [1].

.

Figure 6: Images exiting from the 1st, 3rd and final exit of the ELF framework. In the 1st exit we
observe easy to classify images. As the exits increase, so does the image hardness.

always reduces the FLOPS count, saving up to 20% FLOPS while improving overall accuracy by over
3%. In contrast, a recent method (BBN [1]) achieves similar accuracy by using more than double the
FLOPS of the baseline CE model. We ascribe ELF’s improvement in generalization to the hardness
aware learning, which we further discuss below.

Visualizing the learned notion of input-hardness. In Figure 6 we present a variety of test set
images exiting through auxiliary branches in an ELF ResNet-50 model trained on ImageNet LT. For a
particular class, we observe that the object of interest is easier to distinguish in images exiting from
earlier branches. For example, consider the lemon class. In the image obtained from exit 1 (column 6,
row 3), the object of interest is clearly visible. In comparison, lemon images obtained at exit 3 and
(final) exit 5 (column 6, rows 2 and 1), the object of interest is largely obstructed. This highlights that
ELF enables a model to learn an intuitive notion of image hardness.

5 Conclusion

We identified the notion of sample-hardness as a key concept to improve generalization under a
long-tailed class distribution. To incorporate this notion of hardness in the learning process, we
proposed the ELF framework. ELF is complementary to existing work in long-tailed classification
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and can readily integrate with existing approaches to improve classification accuracy. Extensive
evaluations demonstrate that ELF outperforms existing state-of-the-art techniques while enabling
on-the-fly model selection for varying compute budgets.

Broader Impact

We describe two scenarios where ELF can have a high impact.

Disease classification. Long-tailed data distributions arise in many real world use cases. For
example, a typical prediction task on electric health records (EHR) usually involves classifying
over 10,000 diseases codes, many of which are rare. Obtaining good generalization performance
on these rare classes is an extremely challenging problem. The largest dataset considered in this
paper–iNaturalist’18— contains 8,142 classes and presents a challenge of comparable complexity.
On iNaturalist’18, ELF improves state-of-the-art accuracy by over 2.7% (compared to LDAM loss [7])
while saving over 12.5% FLOPS during inference.

Edge device deployment. Another benefit of ELF is that it enables a model to dynamically vary it’s
compute footprint during inference. A real-world use case arises when a model is deployed to an
edge device (e.g., smartphone, tablet, embedded system). As the battery level decreases, an ELF
model can reduce its computational footprint in real time.

Potential weaknesses. Like many deep learning methods, accurate model performance is dependent
on large quantities of labeled data. Unfortunately, this is not always available in every domain. In
addition, our proposed method is ethically neutral meaning we need to pay attention to how it is used
in practice.
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Appendix

A Additional Results on DenseNet-169

In Table 3, we present the top-1 accuracy acheived by a DenseNet-169 model trained on ImageNet LT
with various loss functions. Similar to our findings with ResNet-50 (see Table 1 in the main paper),
we observe that models trained with ELF(LDAM) improve more than 2.5% on top-1 accuracy while
consuming fewer FLOPS. Moreover, the accuracy improvement is acheived on the three class splits
corresponding to the Many, Med and Few shot settings.

Imagenet LT iNaturalist ’18

Many Med Few All Many Med Few All
CE 63.5 38.1 14.4 44.6 (0%) 73.9 64.6 58.1 63.0 (0%)

CE+DRW [6] 60.3 44.2 25.8 47.9 (0%) 68.9 67.3 65.6 66.8 (0%)

Focal+DRW [26] 59.8 44.1 26.0 47.7 (0%) 68.3 66.4 63.6 65.5 (0%)

LDAM+DRW [7] 62.2 44.1 27.6 48.8 (0%) 68.7 67.9 66.5 67.5 (0%)

ELF(LDAM) + DRW (100 epochs) 63.8 46.5 29.0 50.8 (-1.7%) 71.5 68.5 66.2 67.9 (-1.4%)

ELF(LDAM)+ DRW (200 epochs) 64.7 48.2 31.0 52.2 (-2.9%) 71.2 70.6 69.0 70.0 (-6.3%)

Table 3: Top-1 accuracy for DenseNet-169 trained on Imagenet LT and iNaturalist’18 datasets. The
overall accuracy (All column) is decomposed into three splits corresponding to many, medium and
few shot settings. Numbers in parenthesis indicate the FLOPS expended by each method relative
to the baseline model CE (i.e., more negative means more savings, thus better). ELF consistently
improves accuracy while expending fewer FLOPS.

B Hyperparameter search

We identify the best choice of the training and inference exit thresholds t(k), s(k) through a gridsearch.
Figure 7 summarizes the search performed for a ResNet-50 model trained on ImageNet LT dataset
using ELF(LDAM). Each point in the figure corresponds to a (t(k), s(k)) pair, showing the inference
FLOPS (x-axis) and top-1 accuracy (y-axis) achieved by the corresponding model. In total, the
Figure 7 plots 42 models corresponding to seven choices of t(k) ∈ {1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2} ×
10−3 and six choices of s(k) ∈ {1.5, 1.55, 1.6, 1.7, 1.75} × 10−3. Each line on the plot is obtained
by fixing t(k) and varying s(k). The tight clustering of lines reveals that ELF is relatively independent
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Figure 7: Ablation on training and inference thresholds t(k), s(k). Each point (among a total of 42)
represents a Resnet-50 model trained on Imagenet LT using ELF with different values of (t(k), s(k)).
Each line in the figure connects the points with the same value of t(k) points. The tight clustering of
these lines indicates that ELF is robust to the choice of t(k).
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to the choice of the training threshold t(k). This allows us to focus our attention to s(k), which can be
used to generate a family of models along an efficiency-tradeoff curve.

Since ELF is robust to t(k) and iterating over it is expensive (evaluating each choice involves training
a new model from scratch), in practice, we fix the value of t(k) and iterate only over s(k). Our
restricted hyperparameter search for ELF(LDAM) is described as follows. We chose a fixed value of
t(k) = 2

|c| where |c| is the number of classes in the dataset. For CIFAR-10 LT |c| = 10, for ImageNet

LT |c| = 1000 and for iNaturalist’18 |c| = 8142. The inference threshold s(k) is identified by
searching across the set {1.5, 1.55, 1.6, 1.65, 1.7, 1.75}/|c|. Similarly, for ELF(CE) we select a fixed
value of t(k) = 0.9 for all datasets, and the inference threshold s(k) is searched for across the set
{0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.

C Dataset Construction

The datasets used in this paper are constructed as follows:

CIFAR LT datasets [6]. The training sets for CIFAR-10 LT, CIFAR-100 LT are sampled from the
class balanced training sets of CIFAR-10 and CIFAR-100 according to the exponential distribution
nc = nµc. Here nc refers to the remaining number of examples in class c, n is the original number
of examples per class (5000 for CIFAR-10 and 500 for CIFAR-100) and µ ∈ [0, 1]. We select µ such
that the imbalance ratio—which is defined as the ratio between the number of examples in the largest
and smallest class—is 10×, 50×, 100×.

ImageNet LT dataset [12]. The training set for the ImageNet LT dataset is sampled from the original
training set of ImageNet by following the pareto distribution with the α = 6. We follow the training
split proposed by the original paper [12].

iNaturalist’18 dataset [36]. This is a naturally imbalanced dataset consisting of images from 8,142
species. We use the same training and validation split as the original paper [36].

D Architecture of ELF models

Recall that ELF augments a backbone model with auxilliary exits. For the ResNet and DenseNet
family of models, we attach an auxilliary exit before each residual/dense block. The augmented
models are shown in Figure 8, with the auxilliary exit design considerations described below.

ReseNet-32: This backbone model contains three residual block groups (see Figure 8a), with each
group containing five standard “basic blocks”. Each auxilliary exit consists of two convolution layers
with sixty-four kernels of size 3× 3, followed by an average pooling and dense layer.

ReseNet-50: This backbone model contains four residual block groups (see Figure 8b), with the
groups containing 3, 4, 6 and 3 “bottleneck” blocks respectively. Since the filter channels increase
rapidly in this architecture (e.g. group three has 1024 channels), we use depthwise separable
convolution layers at each exit which helps reduce the additional FLOPS introduced by the auxilliary
exits. Each auxilliary exit consists of two convolution layers with 3 × 3 kernels followed by an
average pooling and dense layer. The number of filters in a particular exit is the same as the number
of output channels from the preceeding block.

DenseNet-169 This backbone model contains four dense block groups (see Figure 8c), with the
groups containing 6, 12, 32 and 32 “dense” blocks respectively. Each auxilliary exit consists of two
convolution layers with 3× 3 kernels followed by an average pooling and dense layer. The number
of filters in a particular exit is the same as the number of outuput channels from the preceeding block.
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Figure 8: ELF augments a backbone model with auxilliary exits. This figure describes the configura-
tion of the early exits for the three models considered in this work. The notation 3× 3@16 indicates
that the block / layer contains 16 kernels of size 3× 3.

E Visualizing ELF’s learned notion of hardness

In Figure 9, we provide additional example images exiting from each auxilliary exit of a ResNet-50
model. Similar to our findings in Figure 6 we can see that “harder” images tend to exit from the later
exits, indicating that the network trained with ELF(LDAM) indeed learns a notion of example hardness.
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Figure 9: A random sample of images from the ImageNet LT dataset exiting at each auxilliary branch
of a ResNet-50 ELF model. As the exits increase, so does the image hardness. Each class containing
a gray square indicates no additional images exit from that branch.

15


	Introduction
	Related Research
	ELF: Learning Input-Hardness For Long Tailed Classification
	Input-Hardness Intuition
	Early-Exiting During Training
	Early-Exiting During Inference

	Experiments
	Experimental Setup
	Evalution on Long-Tailed Classification.

	Conclusion
	Additional Results on DenseNet-169
	Hyperparameter search
	Dataset Construction
	Architecture of ELF models
	Visualizing ELF's learned notion of hardness

