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Abstract

Given a large enterprise network of devices and their authen-

tication history (e.g., device logons), how can we quantify

network vulnerability to lateral attack and identify at-risk

devices? We systematically address these problems through

D2M , the first framework that models lateral attacks on en-

terprise networks using multiple attack strategies developed

with researchers, engineers, and threat hunters in the Mi-

crosoft Defender Advanced Threat Protection group. These

strategies integrate real-world adversarial actions (e.g., priv-

ilege escalation) to generate attack paths: a series of compro-

mised machines. Leveraging these attack paths and a novel

Monte-Carlo method, we formulate network vulnerability as

a probabilistic function of the network topology, distribution

of access credentials and initial penetration point. To iden-

tify machines at risk to lateral attack, we propose a suite

of five fast graph mining techniques, including a novel tech-

nique called AnomalyShield inspired by node immuniza-

tion research. Using three real-world authentication graphs

from Microsoft and Los Alamos National Laboratory (up to

223,399 authentications), we report the first experimental

results on network vulnerability to lateral attack, demon-

strating D2M ’s unique potential to empower IT admins to

develop robust user access credential policies.

1 Introduction

Attack campaigns from criminal organizations and na-
tion state actors are quickly becoming one of the most
powerful forms of disruption. In 2016 alone, malicious
cyber activity cost the U.S. economy between $57 and
$109 billion [20]. These cyber-attacks are often highly
sophisticated, targeting governments and large-scale en-
terprises to interrupt critical services and steal intellec-
tual property [5]. Unfortunately, once an attacker has
compromised a single credential for an enterprise ma-
chine, the whole network becomes vulnerable to
lateral attack movements [8], allowing the adversary
to eventually gain control of the network (i.e., escalating
privileges via credential stealing [6]).
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Figure 1: Our D2M framework: 1. Builds an authentication
graph from device authentication history; 2. Allows security
analysts to test different attack strategies to study network
vulnerability; 3. Identifies at-risk machines to monitor,
preempting lateral attacks.

Despite their prevalence, observing and analyzing
lateral attacks is challenging for multiple reasons: (1)
lateral attacks are still relatively sparse compared to the
unsuccessful attack; (2) attack ground-truth is hard to
ascertain, and generally partially uncovered through in-
vestigation; (3) incident reports are frequently withheld
from the public for security and privacy concerns; and
(4) due to the fact that the adversary already has a valid
credential for the network (e.g., gained through phishing
[3]), attackers can operate as a legitimate user. While
real attack data does exist—due to the above challenges,
it is rarely fully visible, or accessible, making the study
of a “complete” attack highly problematic.

Our Contributions
We propose D2M , the first framework that system-

atically quantifies network vulnerability to lateral attack
and identifies at-risk devices (Fig. 1).

Our major contributions include:

• Attack Strategies D2M enables security re-
searchers to integrate their crucial domain knowledge
from studying prior attacks in the form of attack
strategies. We developed three attack strategies by
actively engaging researchers, engineers and threat
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hunters in the Microsoft Advanced Threat Protection
group, whose expertise lies in tracking down adver-
saries in a post-breach environment (once adversary is
on network). D2M integrates real-world adversarial
actions (e.g., privilege escalation), generating attack
paths consisting of a series of compromised machines
(Sec. 5; Fig. 1.2).

• Network Vulnerability Analysis We formulate a
novel Monte-Carlo method for lateral attack vulnera-
bility as a probabilistic function of the network topol-
ogy, distribution of access credentials and initial pen-
etration point (Fig. 1.3). This empowers IT admins
to develop robust user access credential policies and
enables security researchers to study the vulnerability
of a network to lateral attack (Sec. 6).

• Network Defense by Identifying At-risk Ma-
chines To identify machines at risk to lateral attack,
we propose a suite of five fast graph mining tech-
niques, including a novel technique called Anoma-
lyShield which prioritizes machines with anomalous
neighbors and high eigencentrality (Fig. 1.3; Sec. 7).

• Evaluation Using Real-World Data Using three
real-world authentication graphs from Microsoft and
Los Alamos National Laboratory (LANL; up to
223,399 authentications), we report the first exper-
imental results on network vulnerability to lateral at-
tack and at-risk machine identification (Sec. 5).

• Impact to Microsoft and Beyond. The Microsoft
Defender Advanced Threat Protection product is de-
ployed to thousands of enterprises around the world,
and is a leader in the Endpoint Detection and Re-
sponse (EDR) market [13]. The ability to detect and
prevent lateral movement is one of the most challeng-
ing areas of post-breach detection. This research has
led to major impact to Microsoft products, inspiring
changes to the product’s approach to lateral move-
ment detection.

Table 1 describes the main symbols used in the
paper. We follow standard notation and use capital bold
letters for matrices (e.g., A), lower-case bold letters for
vectors (e.g., a) and calligraphic font for sets (e.g., S).

2 Background and Our Differences

Our work intersects the domains of lateral attack and
graph mining, we briefly review related work below. Dif-
ferent from existing work that detects lateral movement
after an adversary is on the network, our work quan-
tifies network vulnerability to lateral attack and
identifies at-risk machines. Another important dis-
tinction is that this work uses real-world enterprise au-
thentication graphs, while most prior work has not.

Symbol Definition

G Directed, unweighted, attributed graph
V, E Set of nodes and edges in graph G
n,m Number nodes |V |, edges in |E| in G
A(i, j) Adj. matrix of G at ith row, j th column
u(i) Eigenvector at position i
C, c Credential set; credential instance
D Credential generation process
d Credential vector
H, h Ordered hygiene set; hygiene instance
N+(v), N(v) Successors of v; neighbors of v
R, T Set of start nodes; set of attacker moves
Sk Set of k nodes to monitor
SV (Sk), Shield value of Sk
AV (Sk) Anomaly value of Sk
L(G) Vulnerability of G to lateral attacks
p Attack path
a Per-machine anomaly vector
is Number of sub-path intervals
k Number of machines to vaccinate

Table 1: Symbols and Definition

2.1 Detecting Lateral Attacks Significant re-
search in detecting lateral movement in networks has
been done [14, 16, 19, 7]. Latte [14], a graph based de-
tection framework, discovers potential lateral movement
in a network using forensic analysis of known infected
computers. In [16], Neil et al. detects lateral attacks
using statistical detection of anomalous graph patterns
(e.g., paths, stars) over time. Alternatively, Noureddine
et al. [19] proposes a zero-sum game to identify which
machines a defender should monitor to slow down an
attacker. Finally, a data fusion technique is proposed
by Fawaz et al. [7], where host-level process communi-
cation graphs are aggregated into system-wide commu-
nication graphs to detect lateral movement.

2.2 Graph Mining & Network Security Graph
mining has been extensively applied to the more general
domain of network security. Authentication graphs have
been used to study network security from a variety of
viewpoints [8, 11, 16]. In [8], Hagberg et al. studies
credential hopping in authentication graphs and finds
that by reducing a machine’s credential cache, lateral
movement can be restricted. Alternatively, Kent et
al. [11] develops individual user authentication graphs
to differentiate normal authentication activity from
malicious. Orthogonal to the authentication graph and
our work, attack graphs have been proposed to analyze
a network’s risk to known security issues [24, 2, 9].
These graphs represent sequences of known system
vulnerabilities that can be maliciously exploited; and
are often used by IT admins to determine patch priority.
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3 Authentication Graph

D2M converts authentication history of network devices
into an authentication graph, where directed edges rep-
resent machine-machine authentications (i.e., logons) in
an organization. Below, we provide an overview of the
authentication graph setup and the infusion of real-
world domain knowledge into its construction.

3.1 Building Graph Structure Modern enterprise
computer networks typically rely on one of two types
of centrally managed authentication mechanisms to au-
thenticate user activity: Microsoft NTLM [1] or MIT
Kerberos [17]. To avoid repeated authentication with
network resources (e.g., printer, corporate web sites,
email), both NTLM and Kerberos implement credential
caching where user credentials are stored on the com-
puter until either the user logs off (Kerberos), or the ma-
chine is restarted (NTLM) [8]. While these cached cre-
dentials are convenient for legitimate user activity, they
pose significant risk for malicious exploitation [6, 25].

Leveraging this authentication history, we form a
directed, unweighted graph G = (V, E), where an edge
represents an authentication between source machine vs
and destination machine vd (see Fig. 1.1). We combine
all authentications between two machines into a single
edge. These authentication events are recorded over a
period of time, forming the graph topology of an or-
ganization [8, 11]. To verify that a remote connection
between two machines can be established, authentica-
tion information is passed using cached credentials. In
an enterprise network, these credentials typically follow
a hierarchical scheme: user (c1) at the bottom, local
admin (c2) and network admin in the middle (c3), and
domain admin (c4) at the top (c1 < c2 < c3 < c4)
[25]. Depending on the type of cached credential, it will
be valid until the user logs out (Kerberos) or until the
machine is restarted (NTLM).

3.2 Integrating Domain Knowledge To enhance
D2M with realistic security and attack practices, we in-
tegrate the following three components into our frame-
work: (1) per-machine credential caching; (2) net-
work hygiene (i.e., how many ‘users’ and ‘admins’ on
the network); and (3) domain controller modeling.

Credential Caching We embed attribute information
into graph G by giving each machine v ∈ V a cached
credential. These credentials are stored as a vector d ∈
Rn, where each entry is a machine in the authentication
graph containing the most recent credential d(i) = c.
While some credential schemes have additional levels
and queue lengths as active directory policies, our
approach captures representative security information.

Network Hygiene We model various credential distri-
butions through three levels of hygiene h ∈ H due to
the unavailability of credential information in the net-
work d =< c1, c2, ..., cn > where n = |V|. Each hygiene
level (h1: low, h2: medium, h3: high) represents the
frequency with which credential types are observed on
the network. Intuitively, a low hygiene level (h1) models
a network with loose IT policies and an abundance of
high-level administrator credentials. In contrast, a high
hygiene level (h3) represents a network with strict IT
policies and limited distribution of admin credentials.
We select each hygiene distribution h ∈ H as: h1 = {c1:
n, c2: n/2, c3: n/5, c4: n/20}, h2 = {c1: n, c2: n/4,
c3: n/10, c4: n/50} and h3 = {c1: n, c2: n/8, c3: n/20,
c4: n/80}, which are determined experimentally in con-
junction with domain experts.

In practice, we distribute these credentials for a
given hygiene h as follows. For every machine in the
network v ∈ V we assign the lowest authorization level
d(v) = c1. We then distribute higher level credentials
as follows—for each increasing credential level c ∈
{c2, c3, c4}, we randomly select h(c) machines from V
and loop through each one, replacing it’s credential level
with a higher one. While these distributions cannot
match every organization’s IT policies, we select them
to model a broad range.

Domain Controller & Privilege Escalation The fi-
nal component we model is the domain controller, which
controls access to network resources. When a source
machine vs attempts to establish a remote connection
to a destination machine vd, the domain controller de-
termines if vs has sufficient privileges d(vs) ≥ d(vd).
Since an organization’s domain controller(s) are never
observed with certainty, we identify it using PageR-
ank (α=0.15) [21]—assigning the machine with largest
PageRank vector r ∈ Rn component the role of domain
controller vdc = argmax(r). After discussions with do-
main experts, we make the simplifying assumption that
the machine with largest PageRank is the domain con-
troller vdc, since it often has the largest number of in-
coming edges (from incoming authentication requests).

Finally, we incorporate the concept of privilege
escalation by allowing the attacker to connect to a
machine that is one credential level higher. That is,
if the attacker has collected credentials c1 and c2, they
can connect to a c1, c2, or c3 machine. In practice, this
is done through mining the memory of the machine to
gain higher levels of credential [15].

4 Formulating the Research Problems

We formally define the three problems that D2M ad-
dresses below. Then we present our solutions for them
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in Section 5, 6, and 7 respectively.

Problem 1. Lateral Attack Modeling

Given: an attack strategy, an initial penetration
point, and directed unweighted graph G with asso-
ciated credential distribution d ∈ D

Find: an attack path p =< v1, v2, ...vi..., vt > in
graph G that starts from the penetration point and
reaches the domain controller, while escalating priv-
ileges in increasing order (see Fig. 2)

Problem 2. Lateral Attack Vulnerability

Given: graph G with credential distribution d ∈ D
Measure: vulnerability L(G) to lateral attacks

Problem 3. Lateral Attack Defense

Given: graph G with credential distribution d ∈ D,
and suspected adversary movement p

Identify: k best machines to monitor for attacks

5 D2M: Lateral Attack Modeling

We present our solution for the lateral attack model-
ing problem (Sect. 4: Problem 1). We begin with an
overview of the lateral attack process in Section 5.1.
Section 5.2 presents lateral attack strategies—developed
with Microsoft domain experts—that produce lateral
movement. Section 5.3 details the algorithm for model-
ing lateral attacks on authentication graphs.

5.1 Lateral Attack Overview An enterprise attack
typically follows a kill chain, which can be distilled
into three phases—(1) penetration of the network; (2)
exploration of the network and escalation of privileges;
and (3) exfiltration of data back to the command and
control server [23]. We discuss each phase below and
highlight our modeling assumptions.

Penetration An enterprise network is typically pen-
etrated through two mechanisms—(a) phishing cam-
paigns targeting organization employees or (b) inciden-
tal exposure from employees downloading malware on
high-risk websites (drive-by download) [12]. We as-
sume the former, since sophisticated adversaries often
target enterprise networks for penetration. A phishing
campaign begins by targeting organization employees
through authentic looking emails containing malicious
attachments or web links. These malicious attachments
contain malware that installs a backdoor; once a back-
door is installed the attacker gains remote access to the
machine, penetrating the enterprise network. We model
this penetration process by assuming that most compro-
mised employees (machines) v ∈ V are at the c1 creden-
tial level and let the attacker randomly start on any of
these machines R = {v ∈ V | d(v) = c1}.

1. Attacker Penetrates
User Machine

2. Escalates
Privileges to Admin

3. Escalates
to Network Admin

5. Compromises
Domain Controller

4. Escalates
to Domain Admin

Figure 2: Attack path generated by D2M . 1. Network
is penetrated; 2-4. Attacker explores the network and
escalates privileges; 5. Attacker compromises the domain
controller, gaining control of the network

Explore & Exploit Once an adversary is on a net-
work, their goal is to explore the network and escalate
privileges. This process begins by stealing the infected
machines cached credentials, allowing them to authenti-
cate with neighboring machines. These credentials can
be stolen in a number of ways, however, it is beyond
the scope of this work and we refer the reader to [25].
Once the adversary has connected to a neighboring ma-
chine, they again steal the cached credentials [6] and
continue this process until they have obtained domain
admin privileges c4. We model this attack process in
two ways—(1) black-box, where the attacker has no
prior information on the network (i.e., normal pattern of
authentications); and (2) gray-box, where the attacker
has prior information on the network layout, possibly
through prior reconnaissance or inside help.

Exfiltrate After the adversary has obtained a domain
admin credential c4, they’re able to connect to any
networked machine, freely exploring the network until
they reach the domain controller. Upon accessing the
domain controller, the attacker gains full control over
the network. At this point the adversary can sweep
the network for valuable information and exfiltrate with
impunity. We leave modeling this aspect of the kill chain
to future work.

5.2 Lateral Attack Strategies In conjunction with
domain experts, we develop three attack strategies to
model lateral attacks on authentication graphs; one
black-box and two gray-box.

5.2.1 Black-Box Attack In the black-box setting
we assume the attacker has no knowledge about the net-
work and model movement through a modified random
walk called RandomWalk-Explore (RWE).

RandomWalk-Explore (RWE) with 0.85 probabil-
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ity draws a machine v uniformly at random from the
set of unvisited neighboring machines T . With proba-
bility 0.15, the attacker randomly jumps with uniform
probability to a machine in R; this helps to model some
of the usual behavior that can occur during an attack
(e.g., when an attacker finds remote machine informa-
tion in plain-text). In addition, we select 0.15 as the
random jump probability to align with information re-
trieval literature [21]. We model the RWE process in
Equation 5.1, which describes the probability mass func-
tion (PMF) of a discrete random variable X1, which can
take on any value in the range RX1

= T ∪R with prob-
ability PX1

(v).

(5.1) PX1(v) =


0.15/|R|, if v ∈ R
0.85/|T |, if v ∈ T
0, otherwise

5.2.2 Gray-Box Attacks In the gray-box setting,
the attacker has additional information in the form
of the network topology—allowing for informed attack
strategies. We propose two strateiges, Rank-Explore
(RE) and Degree-Explore (DE).

Rank-Explore (RE) with 0.85 probability draws a
machine v at random from the set of unvisited neighbor-
ing machines T with weight proportional to its PageR-
ank vector r. With probability 0.15, the attacker ran-
domly jumps with uniform probability to a machine in
R. This process is modeled in Equation 5.2.

(5.2) PX2(v) =


0.15/|R|, if v ∈ R
0.85 · r(v)/

∑
i∈T

r(i), if v ∈ T

0, otherwise

Degree-Explore (DE) with 0.85 probability draws
a machine v ∈ T with weight proportional to the
distribution of the network’s degree vector δ = diag(A ·
e). With probability 0.15, the attacker randomly jumps
with uniform probability to a machine in R. This
process is modeled in Equation 5.3.

(5.3) PX3(v) =


0.15/|R|, if v ∈ R
0.85 · δ(v)/

∑
i∈T

δ(i), if v ∈ T

0, otherwise

After a neighbor v has been selected by the attack
strategy, we check that the attacker has the required
credential level to visit this machine. For example, if
c2 is the current highest collected credential, then the
attacker can move to any machine with credential level

Algorithm 1: Lateral Attack Modeling
Input: Adj. matrix A, h, attack strategy

Result: Attack pattern p
1 let ro = PageRank(A); and δo = diag(A · 1)

2 let d ∼ Dh // distribute credentials

3 R = {v ∈ V | d(v) = c1} // start nodes

4 v = rand(R); let T = N+(v); p = [v]

5 tried = {}; visited = {}
6 while v 6= vdt and |T | > 0 and |tried| < |T | do
7 T = T / tried

8 if attack strategy == RWE then

9 v ← X1

10 else if attack strategy == RE then

11 r = ro(T ); v ← X2

12 else if attack strategy == DE then
13 r = δo(T ); v ← X3

14 T = T ∪ tried
15 if V alid(v) and v 6∈ visited then

16 tried = {}
17 T = T \ {v} ∪N+(v)
18 p += v; visited += v

19 else
20 tried ∪ v
21 Return p

c1, c2, or c3. If the move is valid, we update the set
of unvisited neighbors T according to Equation 5.4 and
allow the attacker to collect that machine’s credential.

(5.4) T = T \ {v} ∪N+(v)

5.3 Lateral Attack Algorithm We allow the at-
tacker to randomly penetrate various points of the net-
work (v ∈ R) and then move according to one of the
three strategies: RWE, RE and DE, until the domain
controller vdc is reached or there are no neighbors to
visit. Each successful run of this simulation generates
an attack path p =< v1, v2, ...vi..., vdc >, representing
the sequence of machines visited, with the last node
vdc representing the domain controller. This process is
modeled in Algorithm 1 and repeated for multiple cre-
dential distributions d ∈ D to eliminate bias from a
single distribution. An example attack path generated
from Algorithm 1 can be seen in Figure 2.

5.4 Analysis of Lateral Attack Algorithm The
time and space complexity of Algorithm 1 is O(n2) and
O(n+m), respectively.

There are two time expensive computations, PageR-
ank O(n); and attack strategy machine selection inside
the while loop O(n). Since the while loop can visit ev-
ery node in the graph, the worst case complexity will be
O(n2). Space is linear with respect to nodes and edges
O(n+m) in the graph. Detailed proofs are omitted to
save space.
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6 D2M: Lateral Attack Vulnerability

We present our solution for the lateral attack vulnera-
bility problem (Sect. 4: Problem 2). We begin by dis-
cussing the importance of network vulnerability scoring.
We then formally introduce our method of measuring a
network’s vulnerability to lateral attacks. Finally, we
discuss alternative graph vulnerability scores and why
they are less suited to the task of measuring vulnerabil-
ity to lateral movement.

Vulnerability Scoring To make data driven decisions
regarding IT policy in an enterprise network, it is
important to quantify the risk a network faces to lateral
movement. Unfortunately, directly measuring this risk
is difficult, requiring complex interactions of many
unknown variables. To simplify these interactions, we
propose to quantify network vulnerability to lateral
attack L(·) as a function of three random variables—
(1) network topology G, (2) distribution of credentials
d ∈ D and (3) initial point of penetration v ∈ R.

Since the true credential distribution d =<
c1, c2, c3, c4 > is unknown, along with knowledge of the
organizations IT policies (strict, loose: Section 3.1), we
model credential distributions through the use of hy-
giene levels h ∈ H. For a given hygiene level h ∈ H,
we can marginalize out the dependency of the vulnera-
bility score to the credential distribution d ∈ Dh in ex-
pectation, reducing the vulnerability score to L(G,H =
h, V = v). In addition, we can simulate the attacker
penetrating many different points in the network v ∈ R,
allowing us to marginalize out the dependency to v and
reduce the score to L(G, h). We can view this process
in Equation 6.5 through the lens of Monte Carlo simu-
lation, where in expectation we compute the graph vul-
nerability across many different credential distributions
d ∈ D and start nodes v ∈ R.

(6.5) L(G, h) =
1

|Dh

1

|R|
∑

d∈Dh

∑
v∈R

f(G,d, v)

The vulnerability score L(G, h) is a real number
between 0 ≤ L(G, h) ≤ 1, where a higher value indicates
a more vulnerable network for the given topology G and
hygiene level h. Intuitively, this score is saying that a
network is more vulnerable if attacks are on average
more successful for many credential distributions d ∈ D
and penetration points v ∈ R. We measure an attack’s
success through f(·), which simulates an attack using
Algorithm 1. A value of f(G,d, v) = 1 indicates a
successful attack, which we define as being able to reach
the domain controller vdc. Future work could generalize
this to other targets such as high value servers.

We further simplify the vulnerability score L(·)
by marginalizing out the dependency to hygiene level

h ∈ H. This simplifies Equation 6.5 to a function of the
network topology G, as seen in Equation 6.6.

(6.6) L(G) =
∑
hi∈H

p(hi) · L(G, hi)

With no prior knowledge on the true distribution of
hygiene levels in an organization, we assume a uniform
prior p(h) = 1/3.

Alternative Scoring Significant work has gone into
measuring the vulnerability of graphs [4, 22, 26]. For
example, in [26] the authors define vulnerability of an
undirected graph G as the largest eigenvalue L(G) ,
λ of the adjacency matrix. The intuition is that
as the largest eigenvalue increases, so does the path
capacity of the graph. However, this form of topological
vulnerability scoring can only indirectly measure the
vulnerability of the graph to lateral movement since no
security domain knowledge is integrated.

7 D2M: Lateral Attack Defense

We present our solution for the lateral attack defense
problem (Sec. 4: Problem 3), where the objective is to
identify the best set of k machines Sk to monitor for
lateral attacks. Once this set of machines Sk has been
identified, multiple safeguards can be implemented,
including: changing the sensitivity of on device machine
learning models and force resetting the password.

We make the following assumptions during the de-
fense process—(a) there exists per-machine anomaly de-
tection models that alert on unusual behavior (e.g., de-
viation in port or process activity). Since behavioral
deviations have a larger false positive rate, their be-
havior is anomalous but not necessarily malicious. For
this reason, anomaly alerts are ill-suited for investiga-
tion in isolation due to low confidence. However, these
deviation scores are useful for machine monitoring de-
cisions, especially when these alerts aggregate together
[16]. (b) We assume that each anomaly detection model
is providing real-time feedback to the defender; and (c)
that the defender views all anomalous activity as it oc-
curs through the system alerts. While assumption (c)
is strong, we leave it to future work to model partial
information defense strategies.

7.1 Defense Strategies We propose a suite of five
defense strategies, three static and two dynamic. A
static strategy takes into account only the network
topology G; useful for protecting machines when mon-
itoring resources are limited. A dynamic strategy con-
siders both the network topology G and suspected lat-
eral path movement activity pt,pt−1, ...pi...,p0, where
pi ∈ Rn is a sub-path containing suspicious activity in
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a given interval. This could be useful for real-time pro-
tection malicious activity investigation.

Each attack path p is divided into is sub-paths,
where each sub-path pi is of equal size (except for,
possibly, the last sub-path pt) where t ∈ [0, d pis e]. A
larger value of is creates a few long sub-paths, which
could represent fast moving attacks in the network;
conversely, a small is creates many short sub-paths,
representing slow attacks.

Rank-Defense (RD) statically identifies at-risk ma-
chines based on the network’s PageRank [21]. Assum-
ing a sorted PageRank vector, we identify machines as
follows: Sk = ∪ki=1ri.

Degree-Defense (DD) statically vaccinates the net-
work according to the machines in the network with
highest degree. With a sorted degree vector, we iden-
tify machines as follows: Sk = ∪ki=1δi. While RD and
DD are simple defensive strategies, we are not aware
of any work proposing to identify at-risk machines to
lateral attacks using them.

NetShield (NS) [26] statically vaccinates the network
according to the machine’s Shield-Value (SV ) in Equa-
tion 7.7. The actual selection of Sk occurs in conjunc-
tion with the NetShield algorithm from [26], where the
intuition is to select nodes with highest eigencentrality
[18] while enforcing distance between selected machines
(small or zero A(i, j)). Here, A ∈ {0, 1}n×n, λ is the
largest eigenvalue, and u is the associated eigenvector.

(7.7) SV (Sk) =
∑
i∈Sk

2λ · u(i)2 −
∑

i,j∈Sk

A(i, j)u(i)u(j)

Random Anomalous Neighbor Defense (RAND)
dynamically identifies machines by selecting an anoma-
lous machine va with weight proportional to its anomaly
score a(va), where each element a(v) ∈ [0, 1] and
a ∈ Rn. We assume that when an alert is generated for
a machine in a sub-path, it produces a value of a(v) = 1,
repeating for every machine v ∈ pi. After machine mon-
itoring set Sk is identified using sub-paths pi, ...p0, the
anomaly scores are decayed at+1 = at/2 to give weight
to recent activity (determined experimentally).

The RAND strategy in described through Equa-
tions 7.8 and 7.9. Eq. 7.8 describes the PMF of dis-
crete random variable X4, which can take on any value
in the range RX4

= {v ∈ V | a(v) > 0} with proba-
bility PX4

(v). After drawing a machine va ∼ X4, we
uniformly at random select a neighbor from va. This
can be seen in Equation 7.9, which describes the PMF
of discrete random variable X5, where X5 can take on
any value in the range RX5

= N+(va) with probabil-
ity PX5

(v). This process repeats until k machines have
been selected.

(7.8) PX4(v) =

a(v)/
∑
i∈V

a(i), if v ∈ RX4

0, otherwise

(7.9) PX5(v) =

{
1/|N+(va)|, if v ∈ N+(va)

0, otherwise

AnomalyShield (AS), a novel method we introduce
for dynamic machine identification. We select ma-
chines for monitoring according to their Anomaly-
Value (AV ) in Equation 7.10, in combination with
AnomalyShield (Algorithm 2). The intuition is that
we prioritize machines with anomalous neighbors and
high eigencentrality.

(7.10) AV (Sk) =
∑
i∈Sk

u(i)
∑

j∈N(i)

a(j)u(j)

Since both NetShield and AnomalyShield use eigen-
vector centrality as the underlying centrality metric,
we convert the directed authentication graphs to undi-
rected ones for use in the strategies.

Algorithm 2: AnomalyShield
Input: Adjacency matrix A, anomaly vector a, and

vaccination budget k

Result: a set Sk with k nodes
1 Compute first eigenvalue λ and corresponding

eigenvector u of A

2 c = A * (a * u)
3 score = c * u

4 for iter = 1 to k do
5 v = argmaxi score(i), add v to set S
6 score(v) = -1

7 return S

7.2 Analysis of Defense Strategies We evaluate
time and space complexity with respect to each strategy
since they are the dominating defense cost. The space
is uniform across strategy O(n + m + k), with time
complexity shown below. Proofs omitted for space.

(7.11) T ime =



O(nlogn), if defense = RD

O(nlogn), if defense = DD

O(nk2 +m), if defense = NS [4]

O(kn+m), if defense = AS

O(kn), if defense = RAND

8 Experiments

8.1 Experimental Setup All experiments are con-
ducted on three real authentication graphs, collected
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Graph Source |V | |E| ρ C δavg

Gs Microsoft 100 279 0.028 0.23 5.58

Gl Microsoft 2,039 3,853 0.001 0.26 3.78
Glanl LANL 14,813 223,399 0.001 0.62 30.16

Table 2: Graph Statistics. ρ: graph density, C: average
clustering coefficient, δavg: mean node out-degree.

over 30 days (statistics in Table 2). Two graphs are from
Microsoft: anonymized enterprise networks Gs and Gl;
and one is from Los Alamos National Lab [10]: open-
sourced network Glanl. For each attack strategy and hy-
giene level, we strive to collect 200 unique attack paths
for 50 credential distributions d ∈ D. These parameters
are determined based on the available 2-week computa-
tion budget for data collection. Certain combinations
of G and d have a high rate of attack failure; we ter-
minate the collection process at 10,000 failed attempts,
collecting as many as possible.

8.2 Network Vulnerability Analysis In Table 3,
we summarize the first experimental results on network
vulnerability to lateral attack by analyzing the attack
strategies Rank-Explore (RE), Degree-Explore (DE),
and RandomWalk-Explore (RWE) (discussed in Sect. 5).
For each strategy, we average the attack path length
across all credential distributions. We compute the
network vulnerability statistics using Eq. 6.5—hygiene-
specific L(G, h); and Eq. 6.6—whole-network L(G) from
Section 6. We identify multiple key insights:

1. Informed Strategies Lead to Quicker Attacks
The RE and DE strategies produce shorter paths in
general, compared to RWE. This is expected, as prior
knowledge should help the attacker reach the domain
controller in less time. Also, adversaries likely prefer
shorter attack paths, which leaves smaller footprints
for anomaly systems to detect.

2. Improving Hygiene Reduces Vulnerability In-
creasing network hygiene (h1 → h2 → h3) causes
longer attack paths (or none at all) and generally re-
duces vulnerability (e.g., for Gs and Gl). On graph
Gs, the highest hygiene level h3 critically reduces
high-level admin credentials, significantly improv-
ing network robustness (vulnerability reduced to 0).
Such findings can empower IT admins to develop ro-
bust user access credential policies.

3. Linking Topology to Network Vulnerability
Networks that are well-connected are more vulner-
able to lateral attack (e.g., Glanl, with higher aver-
age clustering coefficient and node degree). This is
expected, due to increased lateral movement oppor-
tunities. Relatedly, improving network hygiene level
in such a well-connected network does not seem to

Avg. Path length Vulnerability

Graph Hygiene RE DE RAND L(G, h) L(G)

Gs

h1 19 19 25 .773

h2 49 39 39 .801 .525

h3 0 0 0 0

Gl

h1 33 36 46 .005

h2 63 63 68 .006 .005

h3 133 139 139 .004

Glanl

h1 22 18 45 .967
h2 88 128 90 .981 .976

h3 - - 249 .981

Table 3: Vulnerability Statistics. Statistics excluded for
Glanl strategies RE and DE in h3 as computation exceeded
budget (Sect. 8.1).

reduce network vulnerability.

8.3 Defense Strategy Analysis We report the first
results for identifying machines at-risk to lateral at-
tack, evaluating each defense strategy proposed in Sec-
tion 7. We measure the success of each strategy by its
ability to predict attacker movement. That is, given
graph topology G and suspected lateral attack move-
ment pi, ...,p0, predict attack activity at pi+1 (each pi

is a sequence/path of suspected machines traversed by
the attacker). Formally, we intersect the predicted at-
risk machines Sk with pi+1. Since the defender likely
monitors the domain controller, we exclude it from Sk.
We repeat this process for each sub-path (except p0)
and average over all attack paths. Figure 3 shows every
combination of attack and defense strategy, with bud-
get k=8 and hygiene h2, which provide representative
results. We identify multiple key insights:

1. AnomalyShield as Effective General Defense
AnomalyShield generally performs well (identified
more machines) across: network topology (rows in
figure), adversary’s prior knowledge (columns), and
attack speed (horizontal axes). We believe this is
because AnomalyShield focuses on high-centrality
machines with anomalous neighbors, combining de-
sirable attributes from static and dynamic methods.

2. Similar Effectiveness in Small Graphs All
strategies perform similarly in small graph Gs (first
row), since fewer machines exist for monitoring.

3. Large Graphs Require Informed Defense Unin-
formed defense strategy RAND is significantly less
effective in the large graphGlanl (last row), especially
when encountering faster attacks. This could be ex-
plained by the need for intelligent decision making in
the presence of many options.
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Figure 3: Each defense strategy is compared on three graphs
and attack strategies, where AnomalyShield performs well
across a majority of application scenarios.

9 Conclusion

We present D2M , the first framework that systemati-
cally quantifies network vulnerability to lateral attacks
and identifies at-risk devices. D2M models lateral at-
tacks on enterprise networks using attack strategies de-
veloped with Microsoft. We formulate network vulner-
ability as a novel Monte-Carlo method and propose a
suite of five fast graph mining techniques, including the
novel AnomalyShield method, to identify at-risk ma-
chines. Using real data, we demonstrate D2M ’s unique
potential to empower IT admins to develop robust user
access credential policies.
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